A Lightweight Iterative Compilation Approach for Optimization Parameter Selection

Yonggang Che, Zhenghua Wang
{"title":"A Lightweight Iterative Compilation Approach for Optimization Parameter Selection","authors":"Yonggang Che, Zhenghua Wang","doi":"10.1109/IMSCCS.2006.11","DOIUrl":null,"url":null,"abstract":"A key step in program performance optimization is to determine optimal values for certain parameters. Static approaches determine these values based on analytical models. However, complex computer architectures and complex code structures limit the strength of them. Execution-driven approaches like iterative compilation determine these parameter values by executing the program with different parameter values and select the one with the shortest runtime. These approaches can find excellent results for they accurately account for all machine and program components. But the expensive compilation cost has limited their application scope to embedded applications and a small group of math kernels. We propose a low cost iterative compilation approach Lega (limited execution and genetic algorithm) for scientific program optimization parameter selection. It consists of three components: (1)parameterizations to make use of the native compiler; (2) program reduction transformations to reduce the time spent on evaluating each parameter value; (3)genetic algorithm to accelerate the parameter search process. We apply Lega to three math kernels and three SPEC95 benchmarks on two platforms. Results show that Lega can find excellent parameters comparable to previous iterative methods in much shorter time. Its cost is 5.4% of the original iterative compilation for the three math kernels on average. And its cost is 47.22% of the original iterative compilation for the three SPEC95 benchmarks on average, although the latter uses training input set instead of reference input set for the search procedure","PeriodicalId":202629,"journal":{"name":"First International Multi-Symposiums on Computer and Computational Sciences (IMSCCS'06)","volume":"109 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"First International Multi-Symposiums on Computer and Computational Sciences (IMSCCS'06)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IMSCCS.2006.11","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

A key step in program performance optimization is to determine optimal values for certain parameters. Static approaches determine these values based on analytical models. However, complex computer architectures and complex code structures limit the strength of them. Execution-driven approaches like iterative compilation determine these parameter values by executing the program with different parameter values and select the one with the shortest runtime. These approaches can find excellent results for they accurately account for all machine and program components. But the expensive compilation cost has limited their application scope to embedded applications and a small group of math kernels. We propose a low cost iterative compilation approach Lega (limited execution and genetic algorithm) for scientific program optimization parameter selection. It consists of three components: (1)parameterizations to make use of the native compiler; (2) program reduction transformations to reduce the time spent on evaluating each parameter value; (3)genetic algorithm to accelerate the parameter search process. We apply Lega to three math kernels and three SPEC95 benchmarks on two platforms. Results show that Lega can find excellent parameters comparable to previous iterative methods in much shorter time. Its cost is 5.4% of the original iterative compilation for the three math kernels on average. And its cost is 47.22% of the original iterative compilation for the three SPEC95 benchmarks on average, although the latter uses training input set instead of reference input set for the search procedure
一种优化参数选择的轻量级迭代编译方法
程序性能优化的关键步骤是确定某些参数的最优值。静态方法根据分析模型确定这些值。然而,复杂的计算机体系结构和复杂的代码结构限制了它们的强度。执行驱动的方法,如迭代编译,通过执行具有不同参数值的程序来确定这些参数值,并选择具有最短运行时间的程序。这些方法可以找到很好的结果,因为它们准确地解释了所有的机器和程序组件。但是昂贵的编译成本限制了它们的应用范围,仅局限于嵌入式应用程序和一小部分数学内核。我们提出了一种低成本的迭代编译方法Lega(有限执行和遗传算法),用于科学的程序优化参数选择。它由三个部分组成:(1)参数化,以利用本机编译器;(2)程序约简变换,减少评估各参数值所花费的时间;(3)遗传算法加速参数搜索过程。我们将Lega应用于三个数学内核和两个平台上的三个SPEC95基准测试。结果表明,与以前的迭代方法相比,Lega可以在更短的时间内找到优秀的参数。其成本平均为三个数学内核原始迭代编译的5.4%。尽管后者在搜索过程中使用训练输入集而不是参考输入集,但其对三个SPEC95基准的平均迭代编译成本是原始迭代编译的47.22%
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信