{"title":"Indoor Localization Advancement Using Wasserstein Generative Adversarial Networks","authors":"Shivam Kumar, Saikat Majumder, S. Chakravarty","doi":"10.1109/I2CT57861.2023.10126229","DOIUrl":null,"url":null,"abstract":"Fingerprint-based indoor localization methods rely on a database of Received Signal Strength (RSS) measurements and corresponding location labels. However, collecting and maintaining such a database can be costly and time consuming. In this work, we proposed Wasserstein Generative Adversarial Networks (WGAN) to generate synthetic data for fingerprinting-based indoor localization. The proposed system consists of a WGAN that is trained on a dataset of real RSS measurements and corresponding location labels. The generator of the WGAN learns to generate synthetic RSS measurements, and the critic learns to differentiate the generated and the real measurements. We validate the proposed system on a dataset of real RSS measurements. The result of the proposed system shows better localization accuracy as compared to using real data, while being more cost-effective and scalable.","PeriodicalId":150346,"journal":{"name":"2023 IEEE 8th International Conference for Convergence in Technology (I2CT)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-04-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE 8th International Conference for Convergence in Technology (I2CT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/I2CT57861.2023.10126229","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Fingerprint-based indoor localization methods rely on a database of Received Signal Strength (RSS) measurements and corresponding location labels. However, collecting and maintaining such a database can be costly and time consuming. In this work, we proposed Wasserstein Generative Adversarial Networks (WGAN) to generate synthetic data for fingerprinting-based indoor localization. The proposed system consists of a WGAN that is trained on a dataset of real RSS measurements and corresponding location labels. The generator of the WGAN learns to generate synthetic RSS measurements, and the critic learns to differentiate the generated and the real measurements. We validate the proposed system on a dataset of real RSS measurements. The result of the proposed system shows better localization accuracy as compared to using real data, while being more cost-effective and scalable.