A Context-Aware BERT Retrieval Framework Utilizing Abstractive Summarization

Min Pan, Teng Li, Chenghao Yang, Shuting Zhou, Shaoxiong Feng, Youbin Fang, Xingyu Li
{"title":"A Context-Aware BERT Retrieval Framework Utilizing Abstractive Summarization","authors":"Min Pan, Teng Li, Chenghao Yang, Shuting Zhou, Shaoxiong Feng, Youbin Fang, Xingyu Li","doi":"10.1109/WI-IAT55865.2022.00142","DOIUrl":null,"url":null,"abstract":"Recently, the multi-stage reranking framework based on pre-trained language model BERT can significantly improve the ranking performance on information retrieval tasks. However, most of these BERT-based reranking frameworks independently process query-chunk pairs and ignore cross-passages interaction. The context information around each candidate passage is extremely important for relevance judgement. Existing relevance aggregation methods obtain context information through statistical method and lost part of semantic information. Therefore, to capture this cross-passages interaction, this paper proposes a context-aware BERT ranking framework that utilizing abstractive summarization to enhance text semantics. By utilizing PEGASUS to summarize both sides of candidate passage accurately and then concatenate them as the input sequence, BERT could acquire more semantic information under the limitation of the input sequence’s length. The experimental results of two TREC data sets reveal the effectiveness of our proposed method in aggregating contextual semantic relevance.","PeriodicalId":345445,"journal":{"name":"2022 IEEE/WIC/ACM International Joint Conference on Web Intelligence and Intelligent Agent Technology (WI-IAT)","volume":"111 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE/WIC/ACM International Joint Conference on Web Intelligence and Intelligent Agent Technology (WI-IAT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WI-IAT55865.2022.00142","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Recently, the multi-stage reranking framework based on pre-trained language model BERT can significantly improve the ranking performance on information retrieval tasks. However, most of these BERT-based reranking frameworks independently process query-chunk pairs and ignore cross-passages interaction. The context information around each candidate passage is extremely important for relevance judgement. Existing relevance aggregation methods obtain context information through statistical method and lost part of semantic information. Therefore, to capture this cross-passages interaction, this paper proposes a context-aware BERT ranking framework that utilizing abstractive summarization to enhance text semantics. By utilizing PEGASUS to summarize both sides of candidate passage accurately and then concatenate them as the input sequence, BERT could acquire more semantic information under the limitation of the input sequence’s length. The experimental results of two TREC data sets reveal the effectiveness of our proposed method in aggregating contextual semantic relevance.
基于抽象摘要的上下文感知BERT检索框架
近年来,基于预训练语言模型BERT的多阶段重排序框架可以显著提高信息检索任务的排序性能。然而,这些基于bert的重排序框架大多独立处理查询-块对,而忽略交叉交互。每个候选段落周围的语境信息对于相关性判断非常重要。现有的关联聚合方法通过统计方法获取上下文信息,丢失了部分语义信息。因此,为了捕获这种跨段落交互,本文提出了一个上下文感知的BERT排名框架,该框架利用抽象摘要来增强文本语义。BERT利用PEGASUS对候选通道的两边进行准确的汇总,并将其拼接成输入序列,可以在输入序列长度的限制下获得更多的语义信息。两个TREC数据集的实验结果表明了本文方法在聚合上下文语义相关性方面的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信