Student-t background modeling for persons' fall detection through visual cues

Konstantinos Makantasis, A. Doulamis, N. Matsatsinis
{"title":"Student-t background modeling for persons' fall detection through visual cues","authors":"Konstantinos Makantasis, A. Doulamis, N. Matsatsinis","doi":"10.1109/WIAMIS.2012.6226767","DOIUrl":null,"url":null,"abstract":"This article presents a robust, real-time background subtraction algorithm able to operate properly in complex dynamically changing visual conditions and indoor/outdoor environments, based on a single, cheap monocular camera, like a webcam. This algorithm uses an image grid and models each pixel of the grid as a mixture of adaptive Student-t distributions. This approach makes this algorithm robust and efficient, in terms of computational cost and memory requirements, and thus suitable for large scale implementations. The proposed algorithm is applied in the problem of humans' fall detection that presents high complexity of visual content. Finally, the performances of this scheme and the scheme proposed in [1] by the same authors, are compared.","PeriodicalId":346777,"journal":{"name":"2012 13th International Workshop on Image Analysis for Multimedia Interactive Services","volume":"28 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 13th International Workshop on Image Analysis for Multimedia Interactive Services","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WIAMIS.2012.6226767","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 14

Abstract

This article presents a robust, real-time background subtraction algorithm able to operate properly in complex dynamically changing visual conditions and indoor/outdoor environments, based on a single, cheap monocular camera, like a webcam. This algorithm uses an image grid and models each pixel of the grid as a mixture of adaptive Student-t distributions. This approach makes this algorithm robust and efficient, in terms of computational cost and memory requirements, and thus suitable for large scale implementations. The proposed algorithm is applied in the problem of humans' fall detection that presents high complexity of visual content. Finally, the performances of this scheme and the scheme proposed in [1] by the same authors, are compared.
基于视觉线索的人跌倒检测的学生背景建模
本文提出了一种鲁棒的实时背景减法算法,该算法能够在复杂的动态变化的视觉条件和室内/室外环境中正常运行,该算法基于一个廉价的单目相机,如网络摄像头。该算法使用图像网格,并将网格中的每个像素建模为自适应Student-t分布的混合。这种方法使得该算法在计算成本和内存需求方面具有鲁棒性和效率,因此适合大规模实现。该算法应用于视觉内容复杂性较高的人体跌倒检测问题。最后,比较了该方案与同一作者[1]中提出的方案的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信