Particle swarm optimization algorithm for single machine total weighted tardiness problem

M. Tasgetiren, M. Sevkli, Yun-Chia Liang, Gunes Gencyilmaz
{"title":"Particle swarm optimization algorithm for single machine total weighted tardiness problem","authors":"M. Tasgetiren, M. Sevkli, Yun-Chia Liang, Gunes Gencyilmaz","doi":"10.1109/CEC.2004.1331062","DOIUrl":null,"url":null,"abstract":"In This work we present a particle swarm optimization algorithm to solve the single machine total weighted tardiness problem. A heuristic rule, the smallest position value (SPV) rule, is developed to enable the continuous particle swarm optimization algorithm to be applied to all classes of sequencing problems, which are NP-hard in the literature. A simple but very efficient local search method is embedded in the particle swarm optimization algorithm. The computational results show that the particle swarm algorithm is able to find the optimal and best-known solutions on all instances of widely used benchmarks from the OR library.","PeriodicalId":152088,"journal":{"name":"Proceedings of the 2004 Congress on Evolutionary Computation (IEEE Cat. No.04TH8753)","volume":"60 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2004-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"220","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2004 Congress on Evolutionary Computation (IEEE Cat. No.04TH8753)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CEC.2004.1331062","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 220

Abstract

In This work we present a particle swarm optimization algorithm to solve the single machine total weighted tardiness problem. A heuristic rule, the smallest position value (SPV) rule, is developed to enable the continuous particle swarm optimization algorithm to be applied to all classes of sequencing problems, which are NP-hard in the literature. A simple but very efficient local search method is embedded in the particle swarm optimization algorithm. The computational results show that the particle swarm algorithm is able to find the optimal and best-known solutions on all instances of widely used benchmarks from the OR library.
单机总加权延迟问题的粒子群优化算法
本文提出了一种求解单机总加权延迟问题的粒子群算法。为了使连续粒子群优化算法适用于所有类别的排序问题,提出了一种启发式规则——最小位置值(SPV)规则。在粒子群优化算法中嵌入了一种简单而高效的局部搜索方法。计算结果表明,粒子群算法能够在OR库中广泛使用的基准测试的所有实例上找到最优解和最知名解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信