Computation of Vortex Shedding and Radiated Sound for a Circular Cylinder

Jared S. Cox, C. Rumsey, K. Brentner, Bassam A. Younis
{"title":"Computation of Vortex Shedding and Radiated Sound for a Circular Cylinder","authors":"Jared S. Cox, C. Rumsey, K. Brentner, Bassam A. Younis","doi":"10.1115/imece1997-0088","DOIUrl":null,"url":null,"abstract":"\n The Lighthill acoustic analogy approach combined with Reynolds-averaged Navier Stokes is used to predict the sound generated by unsteady viscous flow past a circular cylinder assuming a correlation length of ten cylinder diameters. The two-dimensional unsteady flow field is computed using two Navier-Stokes codes at a low Mach number over a range of Reynolds numbers from 100 to 5 million. Both laminar flow as well as turbulent flow with a variety of eddy viscosity turbulence models are employed. Mean drag and Strouhal number are examined, and trends similar to experiments are observed. Computing the noise within the Reynolds number regime where transition to turbulence occurs near the separation point is problematic: laminar flow exhibits chaotic behavior and turbulent flow exhibits strong dependence on the turbulence model employed. Comparisons of far-field noise with experiment at a Reynolds number of 90,000, therefore, vary significantly, depending on the turbulence model. At a high Reynolds number outside this regime, three different turbulence models yield self-consistent results.","PeriodicalId":146109,"journal":{"name":"4th International Symposium on Fluid-Structure Interactions, Aeroelasticity, Flow-Induced Vibration and Noise: Volume I","volume":"21 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1997-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"19","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"4th International Symposium on Fluid-Structure Interactions, Aeroelasticity, Flow-Induced Vibration and Noise: Volume I","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/imece1997-0088","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 19

Abstract

The Lighthill acoustic analogy approach combined with Reynolds-averaged Navier Stokes is used to predict the sound generated by unsteady viscous flow past a circular cylinder assuming a correlation length of ten cylinder diameters. The two-dimensional unsteady flow field is computed using two Navier-Stokes codes at a low Mach number over a range of Reynolds numbers from 100 to 5 million. Both laminar flow as well as turbulent flow with a variety of eddy viscosity turbulence models are employed. Mean drag and Strouhal number are examined, and trends similar to experiments are observed. Computing the noise within the Reynolds number regime where transition to turbulence occurs near the separation point is problematic: laminar flow exhibits chaotic behavior and turbulent flow exhibits strong dependence on the turbulence model employed. Comparisons of far-field noise with experiment at a Reynolds number of 90,000, therefore, vary significantly, depending on the turbulence model. At a high Reynolds number outside this regime, three different turbulence models yield self-consistent results.
圆柱涡脱落和辐射声的计算
采用Lighthill声学类比法结合reynolds -average Navier Stokes方法,假设相关长度为10个圆柱体直径,对非定常粘性流动通过圆柱体时产生的声音进行了预测。二维非定常流场计算采用两种纳维-斯托克斯码,在100 ~ 500万雷诺数范围内的低马赫数条件下进行。采用了层流和紊流,并采用了多种涡粘紊流模型。研究了平均阻力和斯特罗哈尔数,并观察到与实验相似的趋势。计算雷诺数范围内的噪声是有问题的,其中在分离点附近发生向湍流的过渡:层流表现出混沌行为,而湍流表现出对所采用的湍流模型的强烈依赖。因此,根据湍流模型的不同,远场噪声与实验在9万雷诺数下的比较差异很大。在此范围之外的高雷诺数下,三种不同的湍流模型产生自洽的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信