A Review on Automatic Classification of Honey Botanical Origins using Machine Learning

Mokhtar A. Al-Awadhi, R. Deshmukh
{"title":"A Review on Automatic Classification of Honey Botanical Origins using Machine Learning","authors":"Mokhtar A. Al-Awadhi, R. Deshmukh","doi":"10.1109/MTICTI53925.2021.9664758","DOIUrl":null,"url":null,"abstract":"Honey botanical origin classification is essential to honey authentication and honey botanical origin mislabeling prevention. Recently, several researchers have used advanced analytical techniques for classifying honey floral sources. These methods have incorporated different acquisition technologies and machine learning (ML) models. In this paper, we review state-of-the-art approaches for classifying honey botanical sources. We discuss the various technologies used for measuring honey constituents, honey physical and chemical properties, and technologies for capturing honey spatial and spectral data. Also, we discuss the ML techniques and their classification performances. We give recommendations for future work at the end of this paper.","PeriodicalId":218225,"journal":{"name":"2021 International Conference of Modern Trends in Information and Communication Technology Industry (MTICTI)","volume":"25 4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 International Conference of Modern Trends in Information and Communication Technology Industry (MTICTI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MTICTI53925.2021.9664758","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Honey botanical origin classification is essential to honey authentication and honey botanical origin mislabeling prevention. Recently, several researchers have used advanced analytical techniques for classifying honey floral sources. These methods have incorporated different acquisition technologies and machine learning (ML) models. In this paper, we review state-of-the-art approaches for classifying honey botanical sources. We discuss the various technologies used for measuring honey constituents, honey physical and chemical properties, and technologies for capturing honey spatial and spectral data. Also, we discuss the ML techniques and their classification performances. We give recommendations for future work at the end of this paper.
基于机器学习的蜂蜜植物源自动分类研究进展
蜂蜜原产地分类是蜂蜜鉴定和防止蜂蜜原产地误标的重要环节。近年来,一些研究人员利用先进的分析技术对蜂蜜花源进行了分类。这些方法结合了不同的采集技术和机器学习(ML)模型。在本文中,我们回顾了最新的方法分类蜂蜜植物来源。我们讨论了用于测量蜂蜜成分、蜂蜜物理和化学性质的各种技术,以及捕获蜂蜜空间和光谱数据的技术。此外,我们还讨论了机器学习技术及其分类性能。最后对今后的工作提出了建议。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信