A nonparametric contextual classification based on Markov random fields

Bor-Chen Kuo, Chun-Hsiang Chuang, Chih-Sheng Huang, C. Hung
{"title":"A nonparametric contextual classification based on Markov random fields","authors":"Bor-Chen Kuo, Chun-Hsiang Chuang, Chih-Sheng Huang, C. Hung","doi":"10.1109/WHISPERS.2009.5288978","DOIUrl":null,"url":null,"abstract":"In this paper a nonparametric contextual classification using both spectral and spatial information will be proposed for hyperspectral image classification. Essentially, among the classification, spatial information is acquired on the basis of Markov random field (MRF) and then joined with the nonparametric density estimation. Two MRF-based nonparametric contextual classifications based on kNN and Parzen density estimation will be introduced. We expect this combination could strengthen the capability for classifying pixels of different class labels with similar spectral values and dealing with data that has no clear numerical interpretation.","PeriodicalId":242447,"journal":{"name":"2009 First Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 First Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WHISPERS.2009.5288978","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

Abstract

In this paper a nonparametric contextual classification using both spectral and spatial information will be proposed for hyperspectral image classification. Essentially, among the classification, spatial information is acquired on the basis of Markov random field (MRF) and then joined with the nonparametric density estimation. Two MRF-based nonparametric contextual classifications based on kNN and Parzen density estimation will be introduced. We expect this combination could strengthen the capability for classifying pixels of different class labels with similar spectral values and dealing with data that has no clear numerical interpretation.
基于马尔可夫随机场的非参数上下文分类
本文提出了一种结合光谱和空间信息的非参数上下文分类方法,用于高光谱图像分类。在分类中,本质上是基于马尔可夫随机场(MRF)获取空间信息,然后与非参数密度估计相结合。介绍了基于kNN和Parzen密度估计的两种基于mrf的非参数上下文分类方法。我们期望这种组合能够增强对具有相似光谱值的不同类别标签像素的分类能力,以及处理没有明确数值解释的数据的能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信