Transducer Minimization and Information Compression for NooJ Dictionaries

Slim Mesfar, M. Silberztein
{"title":"Transducer Minimization and Information Compression for NooJ Dictionaries","authors":"Slim Mesfar, M. Silberztein","doi":"10.3233/978-1-58603-975-2-110","DOIUrl":null,"url":null,"abstract":"In this paper, we describe the use of an incremental construction method of minimal, acyclic, deterministic FST. The approach consists in constructing a transducer in a single step by adding new strings one by one and minimizing the resultant automaton incrementally. Then, we present a new method to encode the morphological information associated with the dictionary entries. The new encoding unifies a large number of word forms' analyses, thus reducing the number of terminal states of the dictionary's FST, that triggers a more efficient minimization process. Finally, we present experimental results on the FST that represents the Arabic dictionary.","PeriodicalId":286427,"journal":{"name":"Finite-State Methods and Natural Language Processing","volume":"25 2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Finite-State Methods and Natural Language Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3233/978-1-58603-975-2-110","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

In this paper, we describe the use of an incremental construction method of minimal, acyclic, deterministic FST. The approach consists in constructing a transducer in a single step by adding new strings one by one and minimizing the resultant automaton incrementally. Then, we present a new method to encode the morphological information associated with the dictionary entries. The new encoding unifies a large number of word forms' analyses, thus reducing the number of terminal states of the dictionary's FST, that triggers a more efficient minimization process. Finally, we present experimental results on the FST that represents the Arabic dictionary.
面向noj词典的传感器最小化与信息压缩
在本文中,我们描述了最小、无循环、确定性FST的增量构造方法的使用。该方法包括通过一个接一个地添加新字符串并逐渐最小化结果自动机,在一个步骤中构建换能器。然后,我们提出了一种新的方法来编码与词典条目相关的形态学信息。新的编码统一了大量的词形分析,从而减少了字典的FST的终端状态的数量,从而触发了一个更有效的最小化过程。最后,我们给出了代表阿拉伯语词典的FST的实验结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信