A method for optimization of a conceptual model

Ole Oren
{"title":"A method for optimization of a conceptual model","authors":"Ole Oren","doi":"10.1109/ICDE.1984.7271264","DOIUrl":null,"url":null,"abstract":"Optimization of a conceptual model is a non-trivial task. A set of rules for determining the \"best\" one out of a number of candidate solutions is introduced. A key point is the definition of a set of quantifiable characteristics of a conceptual model; a measurement of the characteristics together with a fixed measurement of the decision-maker's preferences are used to quantify the quality of the candidate solutions relative to each other. The chosen characteristics are: size, change pr. month, data description inaccuracy, semantic relevance, semantic inaccuracy and l/0-model size.","PeriodicalId":365511,"journal":{"name":"1984 IEEE First International Conference on Data Engineering","volume":"99 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1984-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"1984 IEEE First International Conference on Data Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDE.1984.7271264","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Optimization of a conceptual model is a non-trivial task. A set of rules for determining the "best" one out of a number of candidate solutions is introduced. A key point is the definition of a set of quantifiable characteristics of a conceptual model; a measurement of the characteristics together with a fixed measurement of the decision-maker's preferences are used to quantify the quality of the candidate solutions relative to each other. The chosen characteristics are: size, change pr. month, data description inaccuracy, semantic relevance, semantic inaccuracy and l/0-model size.
一种优化概念模型的方法
概念模型的优化是一项非常重要的任务。介绍了一组用于从许多候选解决方案中确定“最佳”解决方案的规则。一个关键点是概念模型的一组可量化特征的定义;特征的测量与决策者偏好的固定测量一起用于量化候选解决方案相对于彼此的质量。选择的特征是:大小、月变化、数据描述不准确、语义相关性、语义不准确和l/0模型大小。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信