Estimation of Bivariate Copula-Based Seemingly Unrelated Tobit Models

N. Wichitaksorn
{"title":"Estimation of Bivariate Copula-Based Seemingly Unrelated Tobit Models","authors":"N. Wichitaksorn","doi":"10.2139/ssrn.2122388","DOIUrl":null,"url":null,"abstract":"This paper extends the analysis of bivariate seemingly unrelated (SUR) Tobit model by modeling its nonlinear dependence structure through copulas. The capability in coupling together the different marginal distributions allows the flexible modeling for the SUR Tobit. The ability in capturing tail dependence is an additionally useful feature of the copulas, especially in modeling the lower tail dependence of the SUR Tobit where some data are censored. We employ the data augmentation technique to generate the censored observations and proceed the model implementation through the Bayesian Markov Chain Monte Carlo approach. The satisfactory results from the simulation and empirical studies indicate the good performance of our proposed model and method where they are applied to model the U.S. out-of-pocket and non-out-of-pocket medical expenses data and the Thai wage earnings income data.","PeriodicalId":273058,"journal":{"name":"ERN: Model Construction & Estimation (Topic)","volume":"31 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ERN: Model Construction & Estimation (Topic)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.2122388","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

Abstract

This paper extends the analysis of bivariate seemingly unrelated (SUR) Tobit model by modeling its nonlinear dependence structure through copulas. The capability in coupling together the different marginal distributions allows the flexible modeling for the SUR Tobit. The ability in capturing tail dependence is an additionally useful feature of the copulas, especially in modeling the lower tail dependence of the SUR Tobit where some data are censored. We employ the data augmentation technique to generate the censored observations and proceed the model implementation through the Bayesian Markov Chain Monte Carlo approach. The satisfactory results from the simulation and empirical studies indicate the good performance of our proposed model and method where they are applied to model the U.S. out-of-pocket and non-out-of-pocket medical expenses data and the Thai wage earnings income data.
基于二元copula的看似无关Tobit模型的估计
本文扩展了二元看似不相关(SUR) Tobit模型的分析,利用copula对其非线性依赖结构进行建模。将不同的边际分布耦合在一起的能力允许对SUR Tobit进行灵活的建模。捕获尾依赖性的能力是copula的另一个有用的特征,特别是在对SUR Tobit的低尾依赖性进行建模时,其中一些数据被删除。我们采用数据增强技术生成截尾观测值,并通过贝叶斯马尔可夫链蒙特卡罗方法进行模型实现。仿真和实证研究的结果表明,我们提出的模型和方法具有良好的性能,并将其应用于美国自付和非自付医疗费用数据和泰国工资收入收入数据的建模。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信