Generating Personalized Algorithms to Learn Bayesian Network Classifiers for Fraud Detection in Web Transactions

A. G. C. D. Sá, G. Pappa, A. Pereira
{"title":"Generating Personalized Algorithms to Learn Bayesian Network Classifiers for Fraud Detection in Web Transactions","authors":"A. G. C. D. Sá, G. Pappa, A. Pereira","doi":"10.1145/2664551.2664568","DOIUrl":null,"url":null,"abstract":"The volume of electronic transactions has raised a lot in last years, mainly due to the popularization of e-commerce. We also observe a significant increase in the number of fraud cases, resulting in billions of dollars losses each year worldwide. Therefore, it is essential to develop and apply techniques that can assist in fraud detection. In this direction, we propose an evolutionary algorithm to automatically build Bayesian Network Classifiers (BNCs) tailored to solve the problem of detecting fraudulent transactions. BNCs are powerful classification models that can deal well with data features, missing data and uncertainty. In order to evaluate the techniques, we adopt an economic efficiency metric and apply them to our real dataset. Our results show good performance in fraud detection, presenting gains up to 17%, compared to the actual scenario of the company.","PeriodicalId":114454,"journal":{"name":"Brazilian Symposium on Multimedia and the Web","volume":"36 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Brazilian Symposium on Multimedia and the Web","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2664551.2664568","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

The volume of electronic transactions has raised a lot in last years, mainly due to the popularization of e-commerce. We also observe a significant increase in the number of fraud cases, resulting in billions of dollars losses each year worldwide. Therefore, it is essential to develop and apply techniques that can assist in fraud detection. In this direction, we propose an evolutionary algorithm to automatically build Bayesian Network Classifiers (BNCs) tailored to solve the problem of detecting fraudulent transactions. BNCs are powerful classification models that can deal well with data features, missing data and uncertainty. In order to evaluate the techniques, we adopt an economic efficiency metric and apply them to our real dataset. Our results show good performance in fraud detection, presenting gains up to 17%, compared to the actual scenario of the company.
生成个性化算法学习贝叶斯网络分类器在网络交易中的欺诈检测
电子交易的数量在过去几年里增加了很多,主要是由于电子商务的普及。我们还观察到欺诈案件的数量显著增加,每年在全球造成数十亿美元的损失。因此,开发和应用有助于欺诈检测的技术是至关重要的。在这个方向上,我们提出了一种进化算法来自动构建贝叶斯网络分类器(bnc),以解决检测欺诈交易的问题。bnc是一种功能强大的分类模型,可以很好地处理数据特征、缺失数据和不确定性。为了评估这些技术,我们采用了一个经济效率指标,并将其应用于我们的真实数据集。我们的结果在欺诈检测方面表现良好,与该公司的实际情况相比,收益高达17%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信