Framework and Evaluation Methodology for Autonomous Drone Racing

Miguel Fernández-Cortizas, David Pérez-Saura, P. Santamaría, Javier Rodríguez-Vázquez, Martin Molina, P. Campoy
{"title":"Framework and Evaluation Methodology for Autonomous Drone Racing","authors":"Miguel Fernández-Cortizas, David Pérez-Saura, P. Santamaría, Javier Rodríguez-Vázquez, Martin Molina, P. Campoy","doi":"10.1142/s2301385022410035","DOIUrl":null,"url":null,"abstract":"In recent years, autonomous drone races have become increasingly popular in the aerial robotics research community, due to the challenges in perception, localization, navigation, and control at high speeds, pushing forward the state of the art every year. However, autonomous racing drones are still far from reaching human pilot performance and a lot of research has to be done to accomplish that. In this work, a complete architecture system and an evaluation method for autonomous drone racing research, based on the open source framework Aerostack 4.0, are proposed. In order to evaluate the performance of the whole system and of each algorithm used separately, this framework is validated not only with simulated flights, but also through real flights in an indoor drone race circuit by using different configurations.","PeriodicalId":164619,"journal":{"name":"Unmanned Syst.","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2022-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Unmanned Syst.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/s2301385022410035","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

In recent years, autonomous drone races have become increasingly popular in the aerial robotics research community, due to the challenges in perception, localization, navigation, and control at high speeds, pushing forward the state of the art every year. However, autonomous racing drones are still far from reaching human pilot performance and a lot of research has to be done to accomplish that. In this work, a complete architecture system and an evaluation method for autonomous drone racing research, based on the open source framework Aerostack 4.0, are proposed. In order to evaluate the performance of the whole system and of each algorithm used separately, this framework is validated not only with simulated flights, but also through real flights in an indoor drone race circuit by using different configurations.
自主无人机竞赛的框架和评估方法
近年来,由于在高速感知、定位、导航和控制方面的挑战,自主无人机比赛在空中机器人研究界越来越受欢迎,每年都在推动最先进的技术。然而,自动驾驶的竞速无人机距离人类飞行员的表现还有很长的路要走,要做到这一点还需要进行大量的研究。在此基础上,提出了基于开源框架Aerostack 4.0的自主无人机竞赛研究的完整架构体系和评估方法。为了评估整个系统的性能以及每个算法单独使用的性能,该框架不仅通过模拟飞行验证,而且通过在室内无人机赛道上使用不同配置的真实飞行验证。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信