Triangular Isotropic Reaction-Diffusion Systems: Application to Texture Synthesis

M. A. Oussous, N. Alaa
{"title":"Triangular Isotropic Reaction-Diffusion Systems: Application to Texture Synthesis","authors":"M. A. Oussous, N. Alaa","doi":"10.12988/IJMA.2013.35106","DOIUrl":null,"url":null,"abstract":"This work is devoted to the existence of weak solutions for m × m isotropic reaction-diffusion systems. This type of system appears in texture synthesis. The originality of this study persists in the fact that the non-linearities considered here involve the gradients of solutions with arbitrary growth and initial data are only in L 2 (Ω). For this reason, New techniques are needed to show the consistency of these models is that we present in this study showing the global existence of weak solutions. Mathematics Subject Classification: 35J20, 35J25, 35J65, 45H15","PeriodicalId":431531,"journal":{"name":"International Journal of Mathematical Analysis","volume":"43 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Mathematical Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.12988/IJMA.2013.35106","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

This work is devoted to the existence of weak solutions for m × m isotropic reaction-diffusion systems. This type of system appears in texture synthesis. The originality of this study persists in the fact that the non-linearities considered here involve the gradients of solutions with arbitrary growth and initial data are only in L 2 (Ω). For this reason, New techniques are needed to show the consistency of these models is that we present in this study showing the global existence of weak solutions. Mathematics Subject Classification: 35J20, 35J25, 35J65, 45H15
三角形各向同性反应扩散系统:在纹理合成中的应用
本文研究了m × m各向同性反应扩散系统弱解的存在性。这种类型的系统出现在纹理合成中。本研究的独创性在于,这里考虑的非线性涉及任意增长解的梯度和初始数据仅在l2中(Ω)。出于这个原因,需要新的技术来显示这些模型的一致性,我们在本研究中展示了弱解的全球存在性。数学学科分类:35J20、35J25、35J65、45H15
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信