New Bounds for GLD Lattices and Codes

M. F. Bollauf, J. Boutros, N. Mir
{"title":"New Bounds for GLD Lattices and Codes","authors":"M. F. Bollauf, J. Boutros, N. Mir","doi":"10.1109/ITW44776.2019.8989412","DOIUrl":null,"url":null,"abstract":"We prove that the ensemble of random Generalized Low-Density (GLD) lattices can attain the Poltyrev limit for an alphabet size increasing polylogarithmically with the lattice dimension. Our main theorem imposes no constraints on the normalized minimum distance of the code associated to the lattice ensemble, any asymptotically good code is suitable. This is a great improvement with respect to the first theorem on Poltyrev goodness of GLD lattices (2015). Our new bound is based on a new method referred to as the buckets approach where we employ the asymptotics of the restricted compositions of the Hamming weight. The new bound has applications in many coding areas beyond the specific lattice ensemble considered in this paper.","PeriodicalId":214379,"journal":{"name":"2019 IEEE Information Theory Workshop (ITW)","volume":"71 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE Information Theory Workshop (ITW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ITW44776.2019.8989412","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We prove that the ensemble of random Generalized Low-Density (GLD) lattices can attain the Poltyrev limit for an alphabet size increasing polylogarithmically with the lattice dimension. Our main theorem imposes no constraints on the normalized minimum distance of the code associated to the lattice ensemble, any asymptotically good code is suitable. This is a great improvement with respect to the first theorem on Poltyrev goodness of GLD lattices (2015). Our new bound is based on a new method referred to as the buckets approach where we employ the asymptotics of the restricted compositions of the Hamming weight. The new bound has applications in many coding areas beyond the specific lattice ensemble considered in this paper.
GLD格和码的新边界
我们证明了随机广义低密度(GLD)晶格的集合可以达到字母大小随晶格维数多对数增加的polytyrev极限。我们的主要定理对与格系集合相关的码的归一化最小距离没有约束,任何渐近好的码都是合适的。这是相对于关于GLD格的Poltyrev良度的第一个定理(2015)的一个很大的改进。我们的新边界是基于一种称为桶法的新方法,其中我们采用了汉明权的受限组合的渐近性。除了本文所考虑的特定格系外,新界在许多编码领域都有应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信