R. Wartell, V. Mohan, Kevin W. Hamlen, Zhiqiang Lin
{"title":"Securing untrusted code via compiler-agnostic binary rewriting","authors":"R. Wartell, V. Mohan, Kevin W. Hamlen, Zhiqiang Lin","doi":"10.1145/2420950.2420995","DOIUrl":null,"url":null,"abstract":"Binary code from untrusted sources remains one of the primary vehicles for malicious software attacks. This paper presents Reins, a new, more general, and lighter-weight binary rewriting and in-lining system to tame and secure untrusted binary programs. Unlike traditional monitors, Reins requires no cooperation from code-producers in the form of source code or debugging symbols, requires no client-side support infrastructure (e.g., a virtual machine or hypervisor), and preserves the behavior of even complex, event-driven, x86 native COTS binaries generated by aggressively optimizing compilers. This makes it exceptionally easy to deploy. The safety of programs rewritten by Reins is independently machine-verifiable, allowing rewriting to be deployed as an untrusted third-party service. An implementation of Reins for Microsoft Windows demonstrates that it is effective and practical for a real-world OS and architecture, introducing only about 2.4% runtime overhead to rewritten binaries.","PeriodicalId":397003,"journal":{"name":"Asia-Pacific Computer Systems Architecture Conference","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"77","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Asia-Pacific Computer Systems Architecture Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2420950.2420995","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 77
Abstract
Binary code from untrusted sources remains one of the primary vehicles for malicious software attacks. This paper presents Reins, a new, more general, and lighter-weight binary rewriting and in-lining system to tame and secure untrusted binary programs. Unlike traditional monitors, Reins requires no cooperation from code-producers in the form of source code or debugging symbols, requires no client-side support infrastructure (e.g., a virtual machine or hypervisor), and preserves the behavior of even complex, event-driven, x86 native COTS binaries generated by aggressively optimizing compilers. This makes it exceptionally easy to deploy. The safety of programs rewritten by Reins is independently machine-verifiable, allowing rewriting to be deployed as an untrusted third-party service. An implementation of Reins for Microsoft Windows demonstrates that it is effective and practical for a real-world OS and architecture, introducing only about 2.4% runtime overhead to rewritten binaries.