Efficient Point-Based Pattern Search in 3D Motion Capture Databases

C. Beecks, Alexander Grass
{"title":"Efficient Point-Based Pattern Search in 3D Motion Capture Databases","authors":"C. Beecks, Alexander Grass","doi":"10.1109/FiCloud.2018.00041","DOIUrl":null,"url":null,"abstract":"3D motion capture data is a specific type of data arising in the Internet of Things. It is widely used in science and industry for recording the movements of humans, animals, or objects over time. In order to facilitate efficient spatio-temporal access into large 3D motion capture databases collected via internet-of-things technology, we propose an efficient 2-Phase Point-based Trajectory Search Algorithm (2PPTSA) which is built on top of a compact in-memory spatial access method. The 2PPTSA is fundamental to any type of pattern-based investigation and enables fast and scalable point-based pattern search in 3D motion capture databases. Our empirical evaluation shows that the 2PPTSA is able to retrieve the most similar trajectories for a given point-based query pattern in a few milliseconds with a comparatively low number of I/O accesses.","PeriodicalId":174838,"journal":{"name":"2018 IEEE 6th International Conference on Future Internet of Things and Cloud (FiCloud)","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE 6th International Conference on Future Internet of Things and Cloud (FiCloud)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FiCloud.2018.00041","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

3D motion capture data is a specific type of data arising in the Internet of Things. It is widely used in science and industry for recording the movements of humans, animals, or objects over time. In order to facilitate efficient spatio-temporal access into large 3D motion capture databases collected via internet-of-things technology, we propose an efficient 2-Phase Point-based Trajectory Search Algorithm (2PPTSA) which is built on top of a compact in-memory spatial access method. The 2PPTSA is fundamental to any type of pattern-based investigation and enables fast and scalable point-based pattern search in 3D motion capture databases. Our empirical evaluation shows that the 2PPTSA is able to retrieve the most similar trajectories for a given point-based query pattern in a few milliseconds with a comparatively low number of I/O accesses.
三维运动捕捉数据库中基于点的高效模式搜索
3D动作捕捉数据是物联网中产生的一种特定类型的数据。它被广泛应用于科学和工业,用于记录人类、动物或物体随时间的运动。为了方便对通过物联网技术收集的大型三维运动捕捉数据库进行有效的时空访问,我们提出了一种高效的基于2相点的轨迹搜索算法(2PPTSA),该算法建立在紧凑的内存空间访问方法之上。2PPTSA是任何类型的基于模式的调查的基础,可以在3D运动捕捉数据库中实现快速和可扩展的基于点的模式搜索。我们的经验评估表明,对于给定的基于点的查询模式,2PPTSA能够在几毫秒内以相对较低的I/O访问次数检索最相似的轨迹。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信