Neuro-Fuzzy based Safe Landing Control System for UAVs

Jullian Dominic D. Ducut, Alezander Mikhail O. Galindo, R. Billones, E. Dadios, I. Valenzuela
{"title":"Neuro-Fuzzy based Safe Landing Control System for UAVs","authors":"Jullian Dominic D. Ducut, Alezander Mikhail O. Galindo, R. Billones, E. Dadios, I. Valenzuela","doi":"10.1109/HNICEM54116.2021.9732007","DOIUrl":null,"url":null,"abstract":"The number of aerial drone users continue to increase due to its availability, usage, and depreciation. The low cost of drones results in low-quality components that are prone to damage. One of the most common problems of drones is the landing system, where most drones crash due to uncontrolled maneuvering of the drone. In this study, Adaptive Neuro-Fuzzy inference Systems (ANFIS) using MATLAB was developed to perform a safe landing system on low-cost drones where the Gaussian Bell Membership function was used due to a low training error of 0.0015693.","PeriodicalId":129868,"journal":{"name":"2021 IEEE 13th International Conference on Humanoid, Nanotechnology, Information Technology, Communication and Control, Environment, and Management (HNICEM)","volume":"33 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE 13th International Conference on Humanoid, Nanotechnology, Information Technology, Communication and Control, Environment, and Management (HNICEM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/HNICEM54116.2021.9732007","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The number of aerial drone users continue to increase due to its availability, usage, and depreciation. The low cost of drones results in low-quality components that are prone to damage. One of the most common problems of drones is the landing system, where most drones crash due to uncontrolled maneuvering of the drone. In this study, Adaptive Neuro-Fuzzy inference Systems (ANFIS) using MATLAB was developed to perform a safe landing system on low-cost drones where the Gaussian Bell Membership function was used due to a low training error of 0.0015693.
基于神经模糊的无人机安全著陆控制系统
由于其可用性,使用和折旧,空中无人机用户的数量继续增加。无人机的低成本导致低质量的部件容易损坏。无人机最常见的问题之一是着陆系统,大多数无人机由于无人机的不受控制的机动而坠毁。本研究利用MATLAB开发了自适应神经模糊推理系统(ANFIS),用于低成本无人机的安全着陆系统,由于训练误差较低(0.0015693),因此使用高斯贝尔隶属度函数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信