Economic Forecasting With Autoregressive Methods and Neural Networks

J. Chen
{"title":"Economic Forecasting With Autoregressive Methods and Neural Networks","authors":"J. Chen","doi":"10.2139/ssrn.3521532","DOIUrl":null,"url":null,"abstract":"Neural networks can forecast economic data with accuracy matching that of conventional autoregressive methods such as SARIMA and VAR. This study uses dense, recurrent, convolutional, and convnet/RNN hybrids to conduct time-series analysis of interest rates, consumer and producer prices, and labor market data. Training on 14 years of data, neural networks produce accurate 50-year forecasts. Gaps in these forecasts may reveal macroeconomic regime changes. Failures in otherwise accurate neural network forecasts may thus inform theoretical economic hypotheses through unsupervised machine learning.","PeriodicalId":114865,"journal":{"name":"ERN: Neural Networks & Related Topics (Topic)","volume":"59 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ERN: Neural Networks & Related Topics (Topic)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.3521532","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Neural networks can forecast economic data with accuracy matching that of conventional autoregressive methods such as SARIMA and VAR. This study uses dense, recurrent, convolutional, and convnet/RNN hybrids to conduct time-series analysis of interest rates, consumer and producer prices, and labor market data. Training on 14 years of data, neural networks produce accurate 50-year forecasts. Gaps in these forecasts may reveal macroeconomic regime changes. Failures in otherwise accurate neural network forecasts may thus inform theoretical economic hypotheses through unsupervised machine learning.
基于自回归方法和神经网络的经济预测
神经网络可以预测经济数据,其准确性与传统的自回归方法(如SARIMA和VAR)相当。本研究使用密集、循环、卷积和convnet/RNN混合方法对利率、消费者和生产者价格以及劳动力市场数据进行时间序列分析。经过14年的数据训练,神经网络可以做出准确的50年预测。这些预测的差距可能会揭示宏观经济体制的变化。因此,在其他方面准确的神经网络预测中,失败可能会通过无监督机器学习为理论经济假设提供信息。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信