Attribute Representation for Human Activity Recognition of Manual Order Picking Activities

Christopher Reining, Michelle Schlangen, Leon Hissmann, M. T. Hompel, Fernando Moya Rueda, G. Fink
{"title":"Attribute Representation for Human Activity Recognition of Manual Order Picking Activities","authors":"Christopher Reining, Michelle Schlangen, Leon Hissmann, M. T. Hompel, Fernando Moya Rueda, G. Fink","doi":"10.1145/3266157.3266214","DOIUrl":null,"url":null,"abstract":"Semantic descriptions or attribute representations have been used successfully for object and scene recognition, and for word-spotting. However, these representations have not been explored deeply on human activity recognition (HAR). Particularly, in the manual order picking process, attribute representations are beneficial for dealing with the versatility of activities in the process. This paper compares the performance of deep architectures trained using different attribute representations for HAR. Besides, it evaluates their quality from the perspective of practical application.","PeriodicalId":151070,"journal":{"name":"Proceedings of the 5th International Workshop on Sensor-based Activity Recognition and Interaction","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2018-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"17","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 5th International Workshop on Sensor-based Activity Recognition and Interaction","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3266157.3266214","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 17

Abstract

Semantic descriptions or attribute representations have been used successfully for object and scene recognition, and for word-spotting. However, these representations have not been explored deeply on human activity recognition (HAR). Particularly, in the manual order picking process, attribute representations are beneficial for dealing with the versatility of activities in the process. This paper compares the performance of deep architectures trained using different attribute representations for HAR. Besides, it evaluates their quality from the perspective of practical application.
人工拣货行为识别的属性表示
语义描述或属性表示已经成功地用于对象和场景识别以及单词识别。然而,这些表征尚未在人类活动识别(HAR)中得到深入的探讨。特别是,在手动挑选订单的过程中,属性表示有利于处理过程中活动的多功能性。本文比较了使用HAR的不同属性表示训练的深度架构的性能。并从实际应用的角度对其质量进行评价。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信