Explainability of AI-Driven Air Combat Agent

Emre Saldiran, M. Hasanzade, G. Inalhan, A. Tsourdos
{"title":"Explainability of AI-Driven Air Combat Agent","authors":"Emre Saldiran, M. Hasanzade, G. Inalhan, A. Tsourdos","doi":"10.1109/CAI54212.2023.00044","DOIUrl":null,"url":null,"abstract":"In safety-critical applications, it is crucial to verify and certify the decisions made by AI-driven Autonomous Systems (ASs). However, the black-box nature of neural networks used in these systems often makes it challenging to achieve this. The explainability of these systems can help with the verification and certification process, which will speed up their deployment in safety-critical applications. This study investigates the explainability of AI-driven air combat agents via semantically grouped reward decomposition. The paper presents two use cases to demonstrate how this approach can help AI and non-AI experts to evaluate and debug the behavior of RL agents.","PeriodicalId":129324,"journal":{"name":"2023 IEEE Conference on Artificial Intelligence (CAI)","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE Conference on Artificial Intelligence (CAI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CAI54212.2023.00044","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In safety-critical applications, it is crucial to verify and certify the decisions made by AI-driven Autonomous Systems (ASs). However, the black-box nature of neural networks used in these systems often makes it challenging to achieve this. The explainability of these systems can help with the verification and certification process, which will speed up their deployment in safety-critical applications. This study investigates the explainability of AI-driven air combat agents via semantically grouped reward decomposition. The paper presents two use cases to demonstrate how this approach can help AI and non-AI experts to evaluate and debug the behavior of RL agents.
ai驱动的空战特工的可解释性
在安全关键型应用中,验证和证明人工智能驱动的自治系统(as)做出的决策至关重要。然而,在这些系统中使用的神经网络的黑箱性质通常使实现这一目标具有挑战性。这些系统的可解释性有助于验证和认证过程,这将加快它们在安全关键应用中的部署。本研究通过语义分组奖励分解研究人工智能驱动的空战代理的可解释性。本文提出了两个用例来演示这种方法如何帮助人工智能和非人工智能专家评估和调试RL代理的行为。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信