Rydberg excitation of trapped strontium ions (Conference Presentation)

M. Hennrich, Gerard Higgins, Fabian Pokorny, F. Kress, C. Maier, Johannes Haag, Y. Colombe
{"title":"Rydberg excitation of trapped strontium ions (Conference Presentation)","authors":"M. Hennrich, Gerard Higgins, Fabian Pokorny, F. Kress, C. Maier, Johannes Haag, Y. Colombe","doi":"10.1117/12.2230062","DOIUrl":null,"url":null,"abstract":"Trapped Rydberg ions are a novel approach for quantum information processing [1,2]. This idea joins the advanced quantum control of trapped ions with the strong dipolar interaction between Rydberg atoms. For trapped ions this method promises to speed up entangling interactions [3] and to enable such operations in larger ion crystals [4]. We report on the first experimental realization of trapped strontium Rydberg ions. A single ion was confined in a linear Paul trap and excited to Rydberg states (25S to 37S) using a two-photon excitation with 243nm and 308nm laser light. The transitions we observed are narrow and the excitation can be performed repeatedly which indicates that the Rydberg ions are stable in the ion trap. Similar results have been recently reported on a single photon Rydberg excitation of trapped calcium ions [5]. The tunability of the 304-309nm laser should enable us to excite our strontium ions to even higher Rydberg levels. Such highly excited levels are required to achieve a strong interaction between neighboring Rydberg ions in the trap as will be required for quantum gates using the Rydberg interaction. References [1] M. Müller, L. Liang, I. Lesanovsky, P. Zoller, New J. Phys. 10, 093009 (2008). [2] F. Schmidt-Kaler, et al., New J. Phys. 13, 075014 (2011). [3] W. Li, I. Lesanovsky, Appl. Phys. B 114, 37-44 (2014). [4] W. Li, A.W. Glaetzle, R. Nath, I. Lesanovsky, Phys. Rev. A 87, 052304 (2013). [5] T. Feldker, et al., arXiv:1506.05958","PeriodicalId":285152,"journal":{"name":"SPIE Photonics Europe","volume":"40 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-04-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"SPIE Photonics Europe","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.2230062","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Trapped Rydberg ions are a novel approach for quantum information processing [1,2]. This idea joins the advanced quantum control of trapped ions with the strong dipolar interaction between Rydberg atoms. For trapped ions this method promises to speed up entangling interactions [3] and to enable such operations in larger ion crystals [4]. We report on the first experimental realization of trapped strontium Rydberg ions. A single ion was confined in a linear Paul trap and excited to Rydberg states (25S to 37S) using a two-photon excitation with 243nm and 308nm laser light. The transitions we observed are narrow and the excitation can be performed repeatedly which indicates that the Rydberg ions are stable in the ion trap. Similar results have been recently reported on a single photon Rydberg excitation of trapped calcium ions [5]. The tunability of the 304-309nm laser should enable us to excite our strontium ions to even higher Rydberg levels. Such highly excited levels are required to achieve a strong interaction between neighboring Rydberg ions in the trap as will be required for quantum gates using the Rydberg interaction. References [1] M. Müller, L. Liang, I. Lesanovsky, P. Zoller, New J. Phys. 10, 093009 (2008). [2] F. Schmidt-Kaler, et al., New J. Phys. 13, 075014 (2011). [3] W. Li, I. Lesanovsky, Appl. Phys. B 114, 37-44 (2014). [4] W. Li, A.W. Glaetzle, R. Nath, I. Lesanovsky, Phys. Rev. A 87, 052304 (2013). [5] T. Feldker, et al., arXiv:1506.05958
捕获锶离子的Rydberg激发(会议报告)
捕获里德伯离子是量子信息处理的一种新方法[1,2]。这个想法将捕获离子的先进量子控制与里德伯原子之间的强偶极相互作用结合起来。对于被捕获的离子,这种方法有望加速纠缠相互作用[3],并在更大的离子晶体中实现这种操作[4]。我们报道了第一个捕获锶里德伯离子的实验实现。用243nm和308nm激光激发单离子到25S ~ 37S的Rydberg态。我们观察到的跃迁很窄,激发可以重复进行,这表明里德堡离子在离子阱中是稳定的。最近在捕获钙离子的单光子里德伯激发上也报道了类似的结果[5]。304-309nm激光器的可调性应该使我们能够将锶离子激发到更高的里德伯能级。这种高度激发的能级需要实现陷阱中相邻里德伯离子之间的强相互作用,正如使用里德伯相互作用的量子门所需要的那样。[1]刘建军,刘建军,李建军,等。中国科学:物理学报,2009,29(1):444 - 444。[2]李建军,李建军,李建军,等。中国生物医学工程学报,2014,32(2):444 - 444。[3]李伟。理论物理。生物学报,2014,37-44(2014)。[4]李文杰,李晓明,李晓明,等。修订A 87, 052304(2013)。[5]李志强,李志强,等
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信