Introduction of time series data analysis using grey system theory

Norihito Shimizu, O. Ueno, C. Komata
{"title":"Introduction of time series data analysis using grey system theory","authors":"Norihito Shimizu, O. Ueno, C. Komata","doi":"10.1109/KES.1998.725894","DOIUrl":null,"url":null,"abstract":"We consider an application of the grey system theory to the time series data forecasting problem, called grey forecasting, where grey implies incomplete or uncertain, and grey system describes a system lacking information about structure messages, operation mechanism and/or behavior documents. In a case of bad data lacking information, the grey forecasting method is known to be effective in time series data analysis. We present the design of grey forecasting model, and compare it with the conventional method.","PeriodicalId":394492,"journal":{"name":"1998 Second International Conference. Knowledge-Based Intelligent Electronic Systems. Proceedings KES'98 (Cat. No.98EX111)","volume":"29 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1998-04-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"1998 Second International Conference. Knowledge-Based Intelligent Electronic Systems. Proceedings KES'98 (Cat. No.98EX111)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/KES.1998.725894","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

We consider an application of the grey system theory to the time series data forecasting problem, called grey forecasting, where grey implies incomplete or uncertain, and grey system describes a system lacking information about structure messages, operation mechanism and/or behavior documents. In a case of bad data lacking information, the grey forecasting method is known to be effective in time series data analysis. We present the design of grey forecasting model, and compare it with the conventional method.
介绍用灰色系统理论分析时间序列数据
我们考虑将灰色系统理论应用于时间序列数据预测问题,称为灰色预测,其中灰色意味着不完整或不确定,灰色系统描述了缺乏结构消息,运行机制和/或行为文件信息的系统。在坏数据缺乏信息的情况下,灰色预测方法在时间序列数据分析中是有效的。提出了灰色预测模型的设计,并与传统预测方法进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信