A fast iterative kernel PCA feature extraction for hyperspectral images

Wenzi Liao, A. Pižurica, W. Philips, Y. Pi
{"title":"A fast iterative kernel PCA feature extraction for hyperspectral images","authors":"Wenzi Liao, A. Pižurica, W. Philips, Y. Pi","doi":"10.1109/ICIP.2010.5651670","DOIUrl":null,"url":null,"abstract":"A fast iterative Kernel Principal Component Analysis (KPCA) is proposed to extract features from hyperspectral images. The proposed method is a kernel version of the Candid Covariance-Free Incremental Principal Component Analysis, which solves the eigenvectors through iteration. Without performing eigen decomposition on Gram matrix, our method can reduce the space complexity and time complexity greatly. Experimental results were validated in comparison with the standard KPCA and linear version methods.","PeriodicalId":228308,"journal":{"name":"2010 IEEE International Conference on Image Processing","volume":"20 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"22","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 IEEE International Conference on Image Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIP.2010.5651670","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 22

Abstract

A fast iterative Kernel Principal Component Analysis (KPCA) is proposed to extract features from hyperspectral images. The proposed method is a kernel version of the Candid Covariance-Free Incremental Principal Component Analysis, which solves the eigenvectors through iteration. Without performing eigen decomposition on Gram matrix, our method can reduce the space complexity and time complexity greatly. Experimental results were validated in comparison with the standard KPCA and linear version methods.
高光谱图像的快速迭代核PCA特征提取
提出了一种快速迭代核主成分分析(KPCA)方法来提取高光谱图像的特征。该方法是坦率无协方差增量主成分分析的核版本,通过迭代求解特征向量。该方法无需对Gram矩阵进行特征分解,大大降低了空间复杂度和时间复杂度。实验结果与标准KPCA法和线性版法进行了比较验证。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信