Subspace and hypothesis based effective segmentation of co-articulated basic-units for concatenative speech synthesis

R. Muralishankar, R. Srikanth, A. Ramakrishnan
{"title":"Subspace and hypothesis based effective segmentation of co-articulated basic-units for concatenative speech synthesis","authors":"R. Muralishankar, R. Srikanth, A. Ramakrishnan","doi":"10.1109/TENCON.2003.1273351","DOIUrl":null,"url":null,"abstract":"In this paper, we present two new methods for vowel-consonant segmentation of a co-articulated basic-units employed in our Thirukkural Tamil text-to-speech synthesis system (G. L. Jayavardhana Rama et al, IEEE workshop on Speech Synthesis, 2002). The basic-units considered in this are CV, VC, VCV, VCCV and VCCC, where C stands for a consonant and V for any vowel. In the first method, we use a subspace-based approach for vowel-consonant segmentation. It uses oriented principal component analysis (OPCA) where the test feature vectors are projected on to the V and C subspaces. The crossover of the norm-contours obtained by projecting the test basic-unit onto the V and C subspaces give the segmentation points which in turn helps in identifying the V and C durations of a test basic-unit. In the second method, we use probabilistic principal component analysis (PPCA) to get probability models for V and C. We then use the Neymen-Pearson (NP) test to segment the basic-unit into V and C. Finally, we show that the hypothesis testing turns out to be an energy detector for V-C segmentation which is similar to the first method.","PeriodicalId":405847,"journal":{"name":"TENCON 2003. Conference on Convergent Technologies for Asia-Pacific Region","volume":"40 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2003-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"TENCON 2003. Conference on Convergent Technologies for Asia-Pacific Region","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TENCON.2003.1273351","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

In this paper, we present two new methods for vowel-consonant segmentation of a co-articulated basic-units employed in our Thirukkural Tamil text-to-speech synthesis system (G. L. Jayavardhana Rama et al, IEEE workshop on Speech Synthesis, 2002). The basic-units considered in this are CV, VC, VCV, VCCV and VCCC, where C stands for a consonant and V for any vowel. In the first method, we use a subspace-based approach for vowel-consonant segmentation. It uses oriented principal component analysis (OPCA) where the test feature vectors are projected on to the V and C subspaces. The crossover of the norm-contours obtained by projecting the test basic-unit onto the V and C subspaces give the segmentation points which in turn helps in identifying the V and C durations of a test basic-unit. In the second method, we use probabilistic principal component analysis (PPCA) to get probability models for V and C. We then use the Neymen-Pearson (NP) test to segment the basic-unit into V and C. Finally, we show that the hypothesis testing turns out to be an energy detector for V-C segmentation which is similar to the first method.
基于子空间和假设的协同语音合成基本单元有效分割
在本文中,我们提出了两种新的方法,用于在Thirukkural泰米尔语文本-语音合成系统中使用的共同发音基本单元的元音-辅音分割(g.l. Jayavardhana Rama等人,IEEE语音合成研讨会,2002)。这里考虑的基本单位是CV, VC, VCV, VCCV和VCCC,其中C代表辅音,V代表任何元音。在第一种方法中,我们使用基于子空间的方法进行元音-辅音分割。它使用定向主成分分析(OPCA),其中测试特征向量被投影到V和C子空间上。通过将测试基本单元投影到V和C子空间上获得的规范轮廓的交叉给出了分割点,这反过来有助于识别测试基本单元的V和C持续时间。在第二种方法中,我们使用概率主成分分析(PPCA)来获得V和c的概率模型,然后使用Neymen-Pearson (NP)检验将基本单元分割为V和c。最后,我们证明假设检验是V- c分割的能量检测器,类似于第一种方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信