Metaheuristic Optimization of Insulin Infusion Protocols Using Historical Data with Validation Using a Patient Simulator

Hongyu Wang, Lynne M Chepulis, R. Paul, Michael Mayo
{"title":"Metaheuristic Optimization of Insulin Infusion Protocols Using Historical Data with Validation Using a Patient Simulator","authors":"Hongyu Wang, Lynne M Chepulis, R. Paul, Michael Mayo","doi":"10.1142/s2196888821500111","DOIUrl":null,"url":null,"abstract":"Metaheuristic search algorithms are used to develop new protocols for optimal intravenous insulin infusion rate recommendations in scenarios involving hospital in-patients with Type 1 Diabetes. Two metaheuristic search algorithms are used, namely, Particle Swarm Optimization and Covariance Matrix Adaption Evolution Strategy. The Glucose Regulation for Intensive Care Patients (GRIP) serves as the starting point of the optimization process. We base our experiments on a methodology in the literature to evaluate the favorability of insulin protocols, with a dataset of blood glucose level/insulin infusion rate time series records from 16 patients obtained from the Waikato District Health Board. New and significantly better insulin infusion strategies than GRIP are discovered from the data through metaheuristic search. The newly discovered strategies are further validated and show good performance against various competitive benchmarks using a virtual patient simulator.","PeriodicalId":256649,"journal":{"name":"Vietnam. J. Comput. Sci.","volume":"35 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Vietnam. J. Comput. Sci.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/s2196888821500111","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Metaheuristic search algorithms are used to develop new protocols for optimal intravenous insulin infusion rate recommendations in scenarios involving hospital in-patients with Type 1 Diabetes. Two metaheuristic search algorithms are used, namely, Particle Swarm Optimization and Covariance Matrix Adaption Evolution Strategy. The Glucose Regulation for Intensive Care Patients (GRIP) serves as the starting point of the optimization process. We base our experiments on a methodology in the literature to evaluate the favorability of insulin protocols, with a dataset of blood glucose level/insulin infusion rate time series records from 16 patients obtained from the Waikato District Health Board. New and significantly better insulin infusion strategies than GRIP are discovered from the data through metaheuristic search. The newly discovered strategies are further validated and show good performance against various competitive benchmarks using a virtual patient simulator.
使用历史数据的胰岛素输注方案的元启发式优化,并使用患者模拟器进行验证
元启发式搜索算法用于开发新的方案,以最佳静脉胰岛素输注率推荐涉及1型糖尿病住院患者的情况下。采用两种元启发式搜索算法,即粒子群优化算法和协方差矩阵自适应进化策略。重症监护患者葡萄糖调节(GRIP)作为优化过程的起点。我们的实验基于文献中的一种方法来评估胰岛素方案的有利性,使用从怀卡托区卫生委员会获得的16名患者的血糖水平/胰岛素输注率时间序列记录数据集。通过元启发式搜索从数据中发现新的和明显优于GRIP的胰岛素输注策略。新发现的策略被进一步验证,并在使用虚拟患者模拟器的各种竞争性基准测试中显示出良好的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信