{"title":"Multiple binary classifiers to analyse decision of non-compliance: For automated evaluation of piping layout","authors":"Wei-Chian Tan, I. Chen, H. K. Tan","doi":"10.1109/COASE.2017.8256079","DOIUrl":null,"url":null,"abstract":"This paper presents an approach to analyse decision from existing framework on automated evaluation of piping layout or design for reason of non-compliance. On top of Histogram of Connectivity and linear Support Vector Machines based approach for prediction if a design is compliant or non-compliant, multiple binary classifiers are trained using linear Support Vector Machines to classify a non-compliant design further according to nature of non-compliance, in space of Histogram of Connectivity. Non-compliant designs in existing dataset of Regulation 12, Annex I, International Convention for the Prevention of Pollution from Ships are further divided into separate categories according to reason of non-compliance. For each sub-category of non-compliance, a binary classifier is trained using linear Support Vector Machines by taking all non-compliant designs belonging to current category as positive and all others as negative class. Existing dataset of 1318 non-compliant designs is divided into seven sub-categories. Developed method has demonstrated encouraging performance on existing dataset of International Convention for the Prevention of Pollution from Ships.","PeriodicalId":445441,"journal":{"name":"2017 13th IEEE Conference on Automation Science and Engineering (CASE)","volume":"35 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 13th IEEE Conference on Automation Science and Engineering (CASE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/COASE.2017.8256079","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
This paper presents an approach to analyse decision from existing framework on automated evaluation of piping layout or design for reason of non-compliance. On top of Histogram of Connectivity and linear Support Vector Machines based approach for prediction if a design is compliant or non-compliant, multiple binary classifiers are trained using linear Support Vector Machines to classify a non-compliant design further according to nature of non-compliance, in space of Histogram of Connectivity. Non-compliant designs in existing dataset of Regulation 12, Annex I, International Convention for the Prevention of Pollution from Ships are further divided into separate categories according to reason of non-compliance. For each sub-category of non-compliance, a binary classifier is trained using linear Support Vector Machines by taking all non-compliant designs belonging to current category as positive and all others as negative class. Existing dataset of 1318 non-compliant designs is divided into seven sub-categories. Developed method has demonstrated encouraging performance on existing dataset of International Convention for the Prevention of Pollution from Ships.