Centering measurement on aspheres: also double-sided

E. Hofbauer, R. Kometer
{"title":"Centering measurement on aspheres: also double-sided","authors":"E. Hofbauer, R. Kometer","doi":"10.1117/12.2632970","DOIUrl":null,"url":null,"abstract":"In industry, the use of high-performance, high-precision and, at the same time, lightweight optomechanical imaging systems is becoming increasingly important. The use of aspherical surfaces is playing an increasing role as the number of lenses can be reduced and dimensions and weight can be minimized significantly. In the case of an asphere, on the other hand, decentering is possible as both a displacement and a tilting and this is completely independent of one another. Therefore, the aspherical semi-finished products must be subjected to certain centering rules during the grinding and polishing process and used on the production spindles in an optimized and adjusted manner in order to avoid rejects during production. A subsequent centering process, as is usual with spheres, is then no longer possible. The internal centering error in an asphere-sphere is an immanent offset of the center of curvature of spherical surface to the aspherical axis of the second surface. The new approach of the vignetting Field Stop Technology (V-SPOT) makes it possible to precisely record the local, meridional pitch error in the zone or at the edge of the aspherical surface and, together with the centering deviation of the vertex, to determine the aspherical axis and thus the inner centering error. A short insight into the latest application of centering measurement of double-sided aspheres from only one side using the high depth of field and the large measuring range of the V-SPOT principle is given.","PeriodicalId":422212,"journal":{"name":"Precision Optics Manufacturing","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Precision Optics Manufacturing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.2632970","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In industry, the use of high-performance, high-precision and, at the same time, lightweight optomechanical imaging systems is becoming increasingly important. The use of aspherical surfaces is playing an increasing role as the number of lenses can be reduced and dimensions and weight can be minimized significantly. In the case of an asphere, on the other hand, decentering is possible as both a displacement and a tilting and this is completely independent of one another. Therefore, the aspherical semi-finished products must be subjected to certain centering rules during the grinding and polishing process and used on the production spindles in an optimized and adjusted manner in order to avoid rejects during production. A subsequent centering process, as is usual with spheres, is then no longer possible. The internal centering error in an asphere-sphere is an immanent offset of the center of curvature of spherical surface to the aspherical axis of the second surface. The new approach of the vignetting Field Stop Technology (V-SPOT) makes it possible to precisely record the local, meridional pitch error in the zone or at the edge of the aspherical surface and, together with the centering deviation of the vertex, to determine the aspherical axis and thus the inner centering error. A short insight into the latest application of centering measurement of double-sided aspheres from only one side using the high depth of field and the large measuring range of the V-SPOT principle is given.
球面定心测量:也是双面测量
在工业中,使用高性能、高精度、同时轻巧的光学机械成像系统变得越来越重要。由于透镜的数量可以减少,尺寸和重量可以显著降低,非球面的使用正在发挥越来越大的作用。在非球面的情况下,另一方面,偏心是可能的,作为位移和倾斜,这是完全独立的。因此,非球面半成品在磨削和抛光过程中必须遵循一定的定心规则,并以优化和调整的方式用于生产主轴上,以避免生产过程中的废品。随后的定心过程,就像通常的球体一样,不再可能了。非球面内定心误差是球面曲率中心相对于第二曲面非球面轴的内在偏移量。渐晕场停止技术(V-SPOT)的新方法可以精确记录非球面区域或边缘的局部、子午节距误差,并与顶点的定心偏差一起确定非球面轴线,从而确定内部定心误差。简要介绍了利用V-SPOT原理的高景深和大测量范围对双面球面进行单面定心测量的最新应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信