Deep Learning-Based Early Detection and Avoidance of Traffic Congestion in Software-Defined Networks

S. Prabhavat, Thananop Thongthavorn, Kitsuchart Pasupa
{"title":"Deep Learning-Based Early Detection and Avoidance of Traffic Congestion in Software-Defined Networks","authors":"S. Prabhavat, Thananop Thongthavorn, Kitsuchart Pasupa","doi":"10.1109/ICITEE56407.2022.9954107","DOIUrl":null,"url":null,"abstract":"Software-defined Networking (SDN) provides an easy way to monitor network and traffic conditions by employing software-based controllers to communicate with the hardware directly. It provides helpful information that enables efficient routing decisions. This research study attempted to use deep learning techniques—Long Short-term Memory, Bidirectional Long Short-term Memory, and Gated Recurrent Unit—to predict network traffic to allow the controller to early detect congestion. The traffic flow in a network link that will likely be congested will be rerouted to a new path with the largest available bandwidth. Various scenarios were simulated to evaluate our deep learning-based SDN controller (Ryu controller platform). The results show that our proposed deep learning-based SDN controller outperformed the traditional load balancing technique.","PeriodicalId":246279,"journal":{"name":"2022 14th International Conference on Information Technology and Electrical Engineering (ICITEE)","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 14th International Conference on Information Technology and Electrical Engineering (ICITEE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICITEE56407.2022.9954107","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Software-defined Networking (SDN) provides an easy way to monitor network and traffic conditions by employing software-based controllers to communicate with the hardware directly. It provides helpful information that enables efficient routing decisions. This research study attempted to use deep learning techniques—Long Short-term Memory, Bidirectional Long Short-term Memory, and Gated Recurrent Unit—to predict network traffic to allow the controller to early detect congestion. The traffic flow in a network link that will likely be congested will be rerouted to a new path with the largest available bandwidth. Various scenarios were simulated to evaluate our deep learning-based SDN controller (Ryu controller platform). The results show that our proposed deep learning-based SDN controller outperformed the traditional load balancing technique.
基于深度学习的软件定义网络交通拥塞早期检测与避免
软件定义网络(SDN)通过使用基于软件的控制器直接与硬件通信,提供了一种简单的方法来监控网络和流量状况。它提供了有用的信息,支持有效的路由决策。本研究尝试使用深度学习技术——长短期记忆、双向长短期记忆和门控循环单元——来预测网络流量,使控制器能够早期检测到拥塞。网络链路中可能出现拥塞的流量流将被重新路由到具有最大可用带宽的新路径。模拟各种场景来评估我们基于深度学习的SDN控制器(Ryu控制器平台)。结果表明,我们提出的基于深度学习的SDN控制器优于传统的负载均衡技术。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信