S. Prabhavat, Thananop Thongthavorn, Kitsuchart Pasupa
{"title":"Deep Learning-Based Early Detection and Avoidance of Traffic Congestion in Software-Defined Networks","authors":"S. Prabhavat, Thananop Thongthavorn, Kitsuchart Pasupa","doi":"10.1109/ICITEE56407.2022.9954107","DOIUrl":null,"url":null,"abstract":"Software-defined Networking (SDN) provides an easy way to monitor network and traffic conditions by employing software-based controllers to communicate with the hardware directly. It provides helpful information that enables efficient routing decisions. This research study attempted to use deep learning techniques—Long Short-term Memory, Bidirectional Long Short-term Memory, and Gated Recurrent Unit—to predict network traffic to allow the controller to early detect congestion. The traffic flow in a network link that will likely be congested will be rerouted to a new path with the largest available bandwidth. Various scenarios were simulated to evaluate our deep learning-based SDN controller (Ryu controller platform). The results show that our proposed deep learning-based SDN controller outperformed the traditional load balancing technique.","PeriodicalId":246279,"journal":{"name":"2022 14th International Conference on Information Technology and Electrical Engineering (ICITEE)","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 14th International Conference on Information Technology and Electrical Engineering (ICITEE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICITEE56407.2022.9954107","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
Software-defined Networking (SDN) provides an easy way to monitor network and traffic conditions by employing software-based controllers to communicate with the hardware directly. It provides helpful information that enables efficient routing decisions. This research study attempted to use deep learning techniques—Long Short-term Memory, Bidirectional Long Short-term Memory, and Gated Recurrent Unit—to predict network traffic to allow the controller to early detect congestion. The traffic flow in a network link that will likely be congested will be rerouted to a new path with the largest available bandwidth. Various scenarios were simulated to evaluate our deep learning-based SDN controller (Ryu controller platform). The results show that our proposed deep learning-based SDN controller outperformed the traditional load balancing technique.