Multi-turn dialogue generation considering speech information of each speaker by adding recurrent neural networks

Takamune Onishi, Hiromitsu Shiina
{"title":"Multi-turn dialogue generation considering speech information of each speaker by adding recurrent neural networks","authors":"Takamune Onishi, Hiromitsu Shiina","doi":"10.1109/iiai-aai53430.2021.00093","DOIUrl":null,"url":null,"abstract":"A dialogue generation method using neural networks (NNs) has been proposed. The HRED model is a model for multi-turn dialogues by creating a hierarchical structure by layering several encoder-decoder models. Furthermore, the VHRED model generates a variety of responses by adding latent variables. However, since these models do not consider the user who has spoken, they generate inconsistent responses in the same dialogue, which is a problem. In this study, instead of using the user's embedding vector, we add a user recurrent NN (User-RNN) to retain the speech information of each speaker and generate consistent responses.","PeriodicalId":414070,"journal":{"name":"2021 10th International Congress on Advanced Applied Informatics (IIAI-AAI)","volume":"21 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 10th International Congress on Advanced Applied Informatics (IIAI-AAI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/iiai-aai53430.2021.00093","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

A dialogue generation method using neural networks (NNs) has been proposed. The HRED model is a model for multi-turn dialogues by creating a hierarchical structure by layering several encoder-decoder models. Furthermore, the VHRED model generates a variety of responses by adding latent variables. However, since these models do not consider the user who has spoken, they generate inconsistent responses in the same dialogue, which is a problem. In this study, instead of using the user's embedding vector, we add a user recurrent NN (User-RNN) to retain the speech information of each speaker and generate consistent responses.
加入递归神经网络,考虑每个说话人的语音信息,生成多回合对话
提出了一种基于神经网络的对话生成方法。HRED模型是一个多回合对话的模型,它通过分层几个编码器-解码器模型来创建一个分层结构。此外,VHRED模型通过添加潜在变量产生多种响应。然而,由于这些模型没有考虑说话的用户,因此它们在相同的对话中生成不一致的响应,这是一个问题。在本研究中,我们不是使用用户的嵌入向量,而是添加一个用户循环神经网络(user - rnn)来保留每个说话者的语音信息并生成一致的响应。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信