Identification of kinematic vehicle model parameters for localization purposes

Máté Fazekas, P. Gáspár, B. Németh
{"title":"Identification of kinematic vehicle model parameters for localization purposes","authors":"Máté Fazekas, P. Gáspár, B. Németh","doi":"10.1109/MFI49285.2020.9235246","DOIUrl":null,"url":null,"abstract":"The article proposes a parameter identification algorithm for a kinematic vehicle model from real measurements of on-board sensors. The motivation of the paper is to improve the localization in poor sensor performance cases. For example, when the GNSS signals are unavailable, or when the vision-based methods are incorrect due to the poor feature number, furthermore, when the IMU-based method fails due to the lack of frequent accelerations. In these situations the wheel encoder-based odometry can be an appropriate choice for pose estimation, however, this method suffers from parameter uncertainty. The proposed method combines the Gauss-Newton non-linear estimation techniques with Kalman-filtering in an iterative loop and identifies the wheel circumferences and track width parameters in three steps. The estimation architecture eliminates the convergence to a local optimum and the divergence resulted in the highly uncertain initial parameter values. The identification performance is verified by a real test of a compact car. The results are compared with the nominal setting, which should be applied in the lack of identification.","PeriodicalId":446154,"journal":{"name":"2020 IEEE International Conference on Multisensor Fusion and Integration for Intelligent Systems (MFI)","volume":"55 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE International Conference on Multisensor Fusion and Integration for Intelligent Systems (MFI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MFI49285.2020.9235246","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

The article proposes a parameter identification algorithm for a kinematic vehicle model from real measurements of on-board sensors. The motivation of the paper is to improve the localization in poor sensor performance cases. For example, when the GNSS signals are unavailable, or when the vision-based methods are incorrect due to the poor feature number, furthermore, when the IMU-based method fails due to the lack of frequent accelerations. In these situations the wheel encoder-based odometry can be an appropriate choice for pose estimation, however, this method suffers from parameter uncertainty. The proposed method combines the Gauss-Newton non-linear estimation techniques with Kalman-filtering in an iterative loop and identifies the wheel circumferences and track width parameters in three steps. The estimation architecture eliminates the convergence to a local optimum and the divergence resulted in the highly uncertain initial parameter values. The identification performance is verified by a real test of a compact car. The results are compared with the nominal setting, which should be applied in the lack of identification.
以定位为目的的车辆运动学模型参数识别
提出了一种基于车载传感器实测数据的车辆运动学模型参数辨识算法。本文的目的是在传感器性能较差的情况下改善定位。例如,当GNSS信号不可用时,或者当基于视觉的方法由于特征数较差而不正确时,或者当基于imu的方法由于缺乏频繁的加速而失败时。在这种情况下,基于车轮编码器的里程计可以作为姿态估计的合适选择,然而,这种方法存在参数不确定性。该方法将高斯-牛顿非线性估计技术与卡尔曼滤波在迭代回路中相结合,分三步识别车轮周长和轨道宽度参数。该估计结构消除了收敛到局部最优和发散导致初始参数值高度不确定的问题。通过一辆小型轿车的实际试验,验证了该系统的识别性能。结果与标称设置进行了比较,在识别不足的情况下应采用标称设置。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信