Retinal Image Segmentation with Small Datasets

Nchongmaje Ndipenoch, A. Miron, Zidong Wang, Yongmin Li
{"title":"Retinal Image Segmentation with Small Datasets","authors":"Nchongmaje Ndipenoch, A. Miron, Zidong Wang, Yongmin Li","doi":"10.5220/0011779200003414","DOIUrl":null,"url":null,"abstract":"Many eye diseases like Diabetic Macular Edema (DME), Age-related Macular Degeneration (AMD), and Glaucoma manifest in the retina, can cause irreversible blindness or severely impair the central version. The Optical Coherence Tomography (OCT), a 3D scan of the retina with high qualitative information about the retinal morphology, can be used to diagnose and monitor changes in the retinal anatomy. Many Deep Learning (DL) methods have shared the success of developing an automated tool to monitor pathological changes in the retina. However, the success of these methods depend mainly on large datasets. To address the challenge from very small and limited datasets, we proposed a DL architecture termed CoNet (Coherent Network) for joint segmentation of layers and fluids in retinal OCT images on very small datasets (less than a hundred training samples). The proposed model was evaluated on the publicly available Duke DME dataset consisting of 110 B-Scans from 10 patients suffering from DME. Experimental results show that the proposed model outperformed both the human experts' annotation and the current state-of-the-art architectures by a clear margin with a mean Dice Score of 88% when trained on 55 images without any data augmentation.","PeriodicalId":162397,"journal":{"name":"Bioimaging (Bristol. Print)","volume":"49 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-03-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioimaging (Bristol. Print)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5220/0011779200003414","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Many eye diseases like Diabetic Macular Edema (DME), Age-related Macular Degeneration (AMD), and Glaucoma manifest in the retina, can cause irreversible blindness or severely impair the central version. The Optical Coherence Tomography (OCT), a 3D scan of the retina with high qualitative information about the retinal morphology, can be used to diagnose and monitor changes in the retinal anatomy. Many Deep Learning (DL) methods have shared the success of developing an automated tool to monitor pathological changes in the retina. However, the success of these methods depend mainly on large datasets. To address the challenge from very small and limited datasets, we proposed a DL architecture termed CoNet (Coherent Network) for joint segmentation of layers and fluids in retinal OCT images on very small datasets (less than a hundred training samples). The proposed model was evaluated on the publicly available Duke DME dataset consisting of 110 B-Scans from 10 patients suffering from DME. Experimental results show that the proposed model outperformed both the human experts' annotation and the current state-of-the-art architectures by a clear margin with a mean Dice Score of 88% when trained on 55 images without any data augmentation.
基于小数据集的视网膜图像分割
许多眼病,如糖尿病性黄斑水肿(DME)、老年性黄斑变性(AMD)和青光眼都表现在视网膜上,可导致不可逆的失明或严重损害中央版本。光学相干断层扫描(OCT)是一种具有高质量视网膜形态学信息的视网膜三维扫描,可用于诊断和监测视网膜解剖结构的变化。许多深度学习(DL)方法都成功地开发了一种自动化工具来监测视网膜的病理变化。然而,这些方法的成功主要依赖于大型数据集。为了解决来自非常小和有限的数据集的挑战,我们提出了一种称为CoNet(相干网络)的深度学习架构,用于在非常小的数据集(少于100个训练样本)上对视网膜OCT图像中的层和流体进行联合分割。该模型在杜克大学公开的DME数据集上进行了评估,该数据集包括来自10名DME患者的110次b扫描。实验结果表明,当在没有任何数据增强的情况下对55张图像进行训练时,所提出的模型的平均Dice Score为88%,明显优于人类专家的注释和当前最先进的架构。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信