BESOCIAL: A Sustainable Knowledge Graph-Based Workflow for Social Media Archiving

S. Lieber, Dylan Van Assche, Sally Chambers, F. Messens, Friedel Geeraert, Julie M. Birkholz, Anastasia Dimou
{"title":"BESOCIAL: A Sustainable Knowledge Graph-Based Workflow for Social Media Archiving","authors":"S. Lieber, Dylan Van Assche, Sally Chambers, F. Messens, Friedel Geeraert, Julie M. Birkholz, Anastasia Dimou","doi":"10.3233/ssw210045","DOIUrl":null,"url":null,"abstract":"Social media as infrastructure for public discourse provide valuable information that needs to be preserved. Several tools for social media harvesting exist, but still only fragmented workflows may be formed with different combinations of such tools. On top of that, social media data but also preservation-related metadata standards are heterogeneous, resulting in a costly manual process. In the framework of BESOCIAL at the Royal Library of Belgium (KBR), we develop a sustainable social media archiving workflow that integrates heterogeneous data sources in a Europeana and PREMIS-based data model to describe data preserved by open source tools. This allows data stewardship on a uniform representation and we generate metadata records automatically via queries. In this paper, we present a comparison of social media harvesting tools and our Knowledge Graph-based solution which reuses off-the-shelf open source tools to harvest social media and automatically generate preservation-related metadata records. We validate our solution by generating Encoded Archival Description (EAD) and bibliographic MARC records for preservation of harvested social media collections from Twitter collected at KBR. Other archiving institutions can build upon our solution and customize it to their own social media archiving policies.","PeriodicalId":275036,"journal":{"name":"International Conference on Semantic Systems","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Conference on Semantic Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3233/ssw210045","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Social media as infrastructure for public discourse provide valuable information that needs to be preserved. Several tools for social media harvesting exist, but still only fragmented workflows may be formed with different combinations of such tools. On top of that, social media data but also preservation-related metadata standards are heterogeneous, resulting in a costly manual process. In the framework of BESOCIAL at the Royal Library of Belgium (KBR), we develop a sustainable social media archiving workflow that integrates heterogeneous data sources in a Europeana and PREMIS-based data model to describe data preserved by open source tools. This allows data stewardship on a uniform representation and we generate metadata records automatically via queries. In this paper, we present a comparison of social media harvesting tools and our Knowledge Graph-based solution which reuses off-the-shelf open source tools to harvest social media and automatically generate preservation-related metadata records. We validate our solution by generating Encoded Archival Description (EAD) and bibliographic MARC records for preservation of harvested social media collections from Twitter collected at KBR. Other archiving institutions can build upon our solution and customize it to their own social media archiving policies.
bessocial:一个可持续的基于知识图谱的社会化媒体归档工作流程
社交媒体作为公共话语的基础设施,提供了需要保存的有价值的信息。社会媒体收集的一些工具已经存在,但是这些工具的不同组合仍然只能形成碎片化的工作流。最重要的是,社交媒体数据以及与保存相关的元数据标准都是异构的,这导致了成本高昂的手动过程。在比利时皇家图书馆(KBR)的BESOCIAL框架中,我们开发了一个可持续的社交媒体归档工作流,该工作流集成了基于欧洲和基于premises的数据模型中的异构数据源,以描述由开源工具保存的数据。这允许统一表示的数据管理,我们可以通过查询自动生成元数据记录。在本文中,我们比较了社交媒体收集工具和我们基于知识图的解决方案,该解决方案重用现成的开源工具来收集社交媒体并自动生成与保存相关的元数据记录。我们通过生成编码档案描述(EAD)和书目MARC记录来验证我们的解决方案,以保存从KBR收集的Twitter收集的社交媒体集合。其他存档机构可以基于我们的解决方案,并根据自己的社交媒体存档政策对其进行定制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信