Nikos Fazakis, Georgios Kostopoulos, Stamatis Karlos, S. Kotsiantis, K. Sgarbas
{"title":"Self-trained eXtreme Gradient Boosting Trees","authors":"Nikos Fazakis, Georgios Kostopoulos, Stamatis Karlos, S. Kotsiantis, K. Sgarbas","doi":"10.1109/IISA.2019.8900737","DOIUrl":null,"url":null,"abstract":"Semi-Supervised Learning (SSL) is an ever-growing research area offering a powerful set of methods, either single or multi-view, for exploiting both labeled and unlabeled instances in the most effective manner. Self-training is a representative SSL algorithm which has been efficiently implemented for solving several classification problems in a wide range of scientific fields. Moreover, self-training has served as the base for the development of several self-labeled methods. In addition, gradient boosting is an advanced machine learning technique, a boosting algorithm for both classification and regression problems, which produces a predictive model in the form of decision trees. In this context, the principal objective of this paper is to put forward an improved self-training algorithm for classification tasks utilizing the efficacy of eXtreme Gradient Boosting (XGBoost) trees in a self-labeled scheme in order to build a highly accurate and robust classification model. A number of experiments on benchmark datasets were executed demonstrating the superiority of the proposed method over representative semi-supervised methods, as statistically verified by the Friedman non-parametric test.","PeriodicalId":371385,"journal":{"name":"2019 10th International Conference on Information, Intelligence, Systems and Applications (IISA)","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 10th International Conference on Information, Intelligence, Systems and Applications (IISA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IISA.2019.8900737","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6
Abstract
Semi-Supervised Learning (SSL) is an ever-growing research area offering a powerful set of methods, either single or multi-view, for exploiting both labeled and unlabeled instances in the most effective manner. Self-training is a representative SSL algorithm which has been efficiently implemented for solving several classification problems in a wide range of scientific fields. Moreover, self-training has served as the base for the development of several self-labeled methods. In addition, gradient boosting is an advanced machine learning technique, a boosting algorithm for both classification and regression problems, which produces a predictive model in the form of decision trees. In this context, the principal objective of this paper is to put forward an improved self-training algorithm for classification tasks utilizing the efficacy of eXtreme Gradient Boosting (XGBoost) trees in a self-labeled scheme in order to build a highly accurate and robust classification model. A number of experiments on benchmark datasets were executed demonstrating the superiority of the proposed method over representative semi-supervised methods, as statistically verified by the Friedman non-parametric test.