{"title":"Textile-based Radio Frequency Energy Harvesting and Storage using Ultra-Compact Rectennas with High Effective-to-Physical Area Ratio","authors":"Mahmoud Wagih, N. Hillier, A. Weddell, S. Beeby","doi":"10.1109/PowerMEMS54003.2021.9658367","DOIUrl":null,"url":null,"abstract":"Wearable Radio Frequency (RF) rectennas do not require expensive or hazardous materials and can be easily integrated with conventional e-textiles. In this paper, we investigate the use of ultra-miniaturized wire-type monopole antennas for energy harvesting (EH) applications, as a method maximizing the effective collection area of a rectenna relative to its physical size, while not reducing the net DC output. The rectenna, operating in the 915 MHz band, is integrated with a simple carbon-based e-textile supercapacitor for direct energy conversion and storage. The integrated module is then demonstrated, for the first time, wirelessly-charging a Bluetooth Low Energy sensor node at over 1 m distance from a license-free Powercast transmitter. The 14.1 mF supercapacitor is charged using the e-textile rectenna filament in 83 s up to 4.14 V, from an incident power density of 23.9 μW/cm2 and a time-averaged efficiency over 40%, enabling the sensor node to sustain operation for 108 s after the wireless RF source is stopped. Compared to state-of-the-art RF energy harvesters, the proposed module achieves over five fold improvement in the RF to DC power harvesting efficiency normalized to the harvester’s area.","PeriodicalId":165158,"journal":{"name":"2021 IEEE 20th International Conference on Micro and Nanotechnology for Power Generation and Energy Conversion Applications (PowerMEMS)","volume":"2012 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE 20th International Conference on Micro and Nanotechnology for Power Generation and Energy Conversion Applications (PowerMEMS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PowerMEMS54003.2021.9658367","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
Wearable Radio Frequency (RF) rectennas do not require expensive or hazardous materials and can be easily integrated with conventional e-textiles. In this paper, we investigate the use of ultra-miniaturized wire-type monopole antennas for energy harvesting (EH) applications, as a method maximizing the effective collection area of a rectenna relative to its physical size, while not reducing the net DC output. The rectenna, operating in the 915 MHz band, is integrated with a simple carbon-based e-textile supercapacitor for direct energy conversion and storage. The integrated module is then demonstrated, for the first time, wirelessly-charging a Bluetooth Low Energy sensor node at over 1 m distance from a license-free Powercast transmitter. The 14.1 mF supercapacitor is charged using the e-textile rectenna filament in 83 s up to 4.14 V, from an incident power density of 23.9 μW/cm2 and a time-averaged efficiency over 40%, enabling the sensor node to sustain operation for 108 s after the wireless RF source is stopped. Compared to state-of-the-art RF energy harvesters, the proposed module achieves over five fold improvement in the RF to DC power harvesting efficiency normalized to the harvester’s area.