ROSMI: A Multimodal Corpus for Map-based Instruction-Giving

Miltiadis Marios Katsakioris, Ioannis Konstas, P. Mignotte, Helen F. Hastie
{"title":"ROSMI: A Multimodal Corpus for Map-based Instruction-Giving","authors":"Miltiadis Marios Katsakioris, Ioannis Konstas, P. Mignotte, Helen F. Hastie","doi":"10.1145/3382507.3418861","DOIUrl":null,"url":null,"abstract":"We present the publicly-available Robot Open Street Map Instructions (ROSMI) corpus: a rich multimodal dataset of map and natural language instruction pairs that was collected via crowdsourcing. The goal of this corpus is to aid in the advancement of state-of-the-art visual-dialogue tasks, including reference resolution and robot-instruction understanding. The domain described here concerns robots and autonomous systems being used for inspection and emergency response. The ROSMI corpus is unique in that it captures interaction grounded in map-based visual stimuli that is both human-readable but also contains rich metadata that is needed to plan and deploy robots and autonomous systems, thus facilitating human-robot teaming.","PeriodicalId":402394,"journal":{"name":"Proceedings of the 2020 International Conference on Multimodal Interaction","volume":"2015 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2020 International Conference on Multimodal Interaction","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3382507.3418861","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

We present the publicly-available Robot Open Street Map Instructions (ROSMI) corpus: a rich multimodal dataset of map and natural language instruction pairs that was collected via crowdsourcing. The goal of this corpus is to aid in the advancement of state-of-the-art visual-dialogue tasks, including reference resolution and robot-instruction understanding. The domain described here concerns robots and autonomous systems being used for inspection and emergency response. The ROSMI corpus is unique in that it captures interaction grounded in map-based visual stimuli that is both human-readable but also contains rich metadata that is needed to plan and deploy robots and autonomous systems, thus facilitating human-robot teaming.
基于地图的多模态语料库教学
我们展示了公开可用的机器人开放街道地图指令(ROSMI)语料库:通过众包收集的地图和自然语言指令对的丰富多模态数据集。该语料库的目标是帮助推进最先进的视觉对话任务,包括参考分辨率和机器人指令理解。这里描述的领域涉及用于检查和应急响应的机器人和自主系统。ROSMI语料库的独特之处在于,它捕获了基于地图的视觉刺激的交互,这些交互既可由人类阅读,又包含了规划和部署机器人和自主系统所需的丰富元数据,从而促进了人机合作。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信