Markovian Segmentation of Color and Gray Level Images

M. Ameur, N. Idrissi, C. Daoui
{"title":"Markovian Segmentation of Color and Gray Level Images","authors":"M. Ameur, N. Idrissi, C. Daoui","doi":"10.1109/CGIV.2016.57","DOIUrl":null,"url":null,"abstract":"The image segmentation is a fundamental tool to analyze and detect objects of interest that can be applied in many fields (medicine, satellite). In this work, we present a classical Markov model for unsupervised image segmentation: \"Hidden Markov Chain with Independent Noise\" (HMC-IN) for segmenting both gray and color images. Then, we compare five iterative algorithms EM, GEM, SEM, MCEM and ICE for estimating parameters of this model under two final bayesian decision criteria MAP and MPM according to the execution time, the convergence, the PNSR index and the rate error.","PeriodicalId":351561,"journal":{"name":"2016 13th International Conference on Computer Graphics, Imaging and Visualization (CGiV)","volume":"12 1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 13th International Conference on Computer Graphics, Imaging and Visualization (CGiV)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CGIV.2016.57","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

The image segmentation is a fundamental tool to analyze and detect objects of interest that can be applied in many fields (medicine, satellite). In this work, we present a classical Markov model for unsupervised image segmentation: "Hidden Markov Chain with Independent Noise" (HMC-IN) for segmenting both gray and color images. Then, we compare five iterative algorithms EM, GEM, SEM, MCEM and ICE for estimating parameters of this model under two final bayesian decision criteria MAP and MPM according to the execution time, the convergence, the PNSR index and the rate error.
彩色和灰度图像的马尔可夫分割
图像分割是分析和检测感兴趣目标的基本工具,可应用于许多领域(医学、卫星)。在这项工作中,我们提出了一种用于无监督图像分割的经典马尔可夫模型:“独立噪声隐马尔可夫链”(HMC-IN),用于分割灰度和彩色图像。然后,根据执行时间、收敛性、PNSR指数和速率误差,比较了EM、GEM、SEM、MCEM和ICE五种迭代算法在MAP和MPM两种最终贝叶斯决策准则下对该模型参数的估计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信