{"title":"Design philosophy for an interactive keyboard terminal","authors":"M. Klerer, F. Grossman, Charles H. Amann","doi":"10.1145/2402536.2402555","DOIUrl":null,"url":null,"abstract":"The basic version of the Klerer--May programming system has been in operation at Columbia University's Hudson Laboratories for nearly four years in an off-line mode and for two years in an on-line mode. This system [1--3] permits programming using normal two-dimensional mathematical expressions and flexible language forms. In the area of scientific applications, such a language approach permits faster total throughput, i.e., less time spent in programming or debugging a specific problem compared to conventional FORTRAN-like languages. It also offers a basic framework for extension into other areas such as the manipulation and editing of two-dimensional mathematical input for automatic typesetting of mathematical text [4]. A typical program segment in this language is illustrated in Fig. 1. More visually complex forms, such as multiple integrals, sums, products, and \"IF\" conditions are also recognized and compiled.","PeriodicalId":148361,"journal":{"name":"Symposium on Interactive Systems for Experimental Applied Mathematics","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1967-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Symposium on Interactive Systems for Experimental Applied Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2402536.2402555","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
The basic version of the Klerer--May programming system has been in operation at Columbia University's Hudson Laboratories for nearly four years in an off-line mode and for two years in an on-line mode. This system [1--3] permits programming using normal two-dimensional mathematical expressions and flexible language forms. In the area of scientific applications, such a language approach permits faster total throughput, i.e., less time spent in programming or debugging a specific problem compared to conventional FORTRAN-like languages. It also offers a basic framework for extension into other areas such as the manipulation and editing of two-dimensional mathematical input for automatic typesetting of mathematical text [4]. A typical program segment in this language is illustrated in Fig. 1. More visually complex forms, such as multiple integrals, sums, products, and "IF" conditions are also recognized and compiled.