{"title":"MC3D: Motion Contrast 3D Scanning","authors":"N. Matsuda, O. Cossairt, Mohit Gupta","doi":"10.1109/ICCPHOT.2015.7168370","DOIUrl":null,"url":null,"abstract":"Structured light 3D scanning systems are fundamentally constrained by limited sensor bandwidth and light source power, hindering their performance in real-world applications where depth information is essential, such as industrial automation, autonomous transportation, robotic surgery, and entertainment. We present a novel structured light technique called Motion Contrast 3D scanning (MC3D) that maximizes bandwidth and light source power to avoid performance trade-offs. The technique utilizes motion contrast cameras that sense temporal gradients asynchronously, i.e., independently for each pixel, a property that minimizes redundant sampling. This allows laser scanning resolution with single-shot speed, even in the presence of strong ambient illumination, significant inter-reflections, and highly reflective surfaces. The proposed approach will allow 3D vision systems to be deployed in challenging and hitherto inaccessible real-world scenarios requiring high performance using limited power and bandwidth.","PeriodicalId":302766,"journal":{"name":"2015 IEEE International Conference on Computational Photography (ICCP)","volume":"68 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"66","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE International Conference on Computational Photography (ICCP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCPHOT.2015.7168370","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 66
Abstract
Structured light 3D scanning systems are fundamentally constrained by limited sensor bandwidth and light source power, hindering their performance in real-world applications where depth information is essential, such as industrial automation, autonomous transportation, robotic surgery, and entertainment. We present a novel structured light technique called Motion Contrast 3D scanning (MC3D) that maximizes bandwidth and light source power to avoid performance trade-offs. The technique utilizes motion contrast cameras that sense temporal gradients asynchronously, i.e., independently for each pixel, a property that minimizes redundant sampling. This allows laser scanning resolution with single-shot speed, even in the presence of strong ambient illumination, significant inter-reflections, and highly reflective surfaces. The proposed approach will allow 3D vision systems to be deployed in challenging and hitherto inaccessible real-world scenarios requiring high performance using limited power and bandwidth.