Condensation of NH3 Within a Plate Heat Exchanger of Small Diameter Channel

X. Tao, Joost A. Kirkenier, C. Ferreira
{"title":"Condensation of NH3 Within a Plate Heat Exchanger of Small Diameter Channel","authors":"X. Tao, Joost A. Kirkenier, C. Ferreira","doi":"10.1115/mnhmt2019-3920","DOIUrl":null,"url":null,"abstract":"\n Most plate heat exchangers (PHEs) have hydraulic diameters in the range of 2∼5 mm and show characteristics of both macro-channels and micro-channels. Both gravity and surface tension have non-negligible influences and determine the heat transfer and frictional pressure drop.\n This paper investigates NH3 condensation in a PHE with a hydraulic diameter of 2.99 mm. The large surface tension of NH3 enhances the micro-channel characteristics. The heat transfer coefficients (HTCs) are compared with homogeneous and separated models, respectively. Both models have been previously compared with the experimental data of HFCs, hydrocarbons and HFOs. The prediction for NH3 is generally good since the deviations are small, while the sensitivity to mass fluxes and vapor qualities cannot be estimated properly. The data of frictional pressure drop are predicted by a correlation of two-phase Fanning friction factor, which is based on homogeneous flow and includes the influences of mass fluxes, vapor qualities, hydraulic diameters, chevron angles, etc. The fluid properties of NH3 are significantly different between liquid and vapor phases, and the averaged density derived from homogeneous flow is under-estimated. The prediction is improved by calculating the averaged density from the void fraction models of separated flow.","PeriodicalId":331854,"journal":{"name":"ASME 2019 6th International Conference on Micro/Nanoscale Heat and Mass Transfer","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ASME 2019 6th International Conference on Micro/Nanoscale Heat and Mass Transfer","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/mnhmt2019-3920","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Most plate heat exchangers (PHEs) have hydraulic diameters in the range of 2∼5 mm and show characteristics of both macro-channels and micro-channels. Both gravity and surface tension have non-negligible influences and determine the heat transfer and frictional pressure drop. This paper investigates NH3 condensation in a PHE with a hydraulic diameter of 2.99 mm. The large surface tension of NH3 enhances the micro-channel characteristics. The heat transfer coefficients (HTCs) are compared with homogeneous and separated models, respectively. Both models have been previously compared with the experimental data of HFCs, hydrocarbons and HFOs. The prediction for NH3 is generally good since the deviations are small, while the sensitivity to mass fluxes and vapor qualities cannot be estimated properly. The data of frictional pressure drop are predicted by a correlation of two-phase Fanning friction factor, which is based on homogeneous flow and includes the influences of mass fluxes, vapor qualities, hydraulic diameters, chevron angles, etc. The fluid properties of NH3 are significantly different between liquid and vapor phases, and the averaged density derived from homogeneous flow is under-estimated. The prediction is improved by calculating the averaged density from the void fraction models of separated flow.
氨在小直径通道板式换热器内的冷凝
大多数板式换热器(phe)的水力直径在2 ~ 5mm范围内,并表现出宏观通道和微通道的特征。重力和表面张力都有不可忽略的影响,并决定传热和摩擦压降。本文研究了水力直径为2.99 mm的PHE中NH3的冷凝现象。NH3的大表面张力增强了微通道的特性。分别比较了均匀模型和分离模型的换热系数。以前已将这两种模型与氢氟碳化物、碳氢化合物和氢氟烯烃的实验数据进行了比较。由于偏差较小,对NH3的预测总体上是好的,而对质量通量和蒸汽质量的敏感性不能很好地估计。摩擦压降数据采用两相范宁摩擦系数的相关性进行预测,该系数以均质流为基础,考虑了质量通量、蒸汽质量、水力直径、v角等因素的影响。NH3的流体性质在液相和气相之间存在显著差异,且均相流动的平均密度被低估。通过计算分离流的孔隙分数模型的平均密度,改进了预测结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信