{"title":"Large Deviation Principles for Stochastic Volatility Models with Reflection and Three Faces of the Stein and Stein Model","authors":"Archil Gulisashvili","doi":"10.2139/ssrn.3757783","DOIUrl":null,"url":null,"abstract":"We introduce stochastic volatility models, in which the volatility is described by a time-dependent nonnegative function of a reflecting diffusion. The idea to use reflecting diffusions as building blocks of the volatility came into being because of a certain volatility misspecification in the classical Stein and Stein model. A version of this model that uses the reflecting Ornstein-Uhlenbeck process as the volatility process is a special example of a stochastic volatility model with reflection. The main results obtained in the present paper are sample path and small-noise large deviation principles for the log-price process in a stochastic volatility model with reflection under rather mild restrictions. We use these results to study the asymptotic behavior of binary barrier options and call prices in the small-noise regime.","PeriodicalId":293888,"journal":{"name":"Econometric Modeling: Derivatives eJournal","volume":"25 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Econometric Modeling: Derivatives eJournal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.3757783","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
We introduce stochastic volatility models, in which the volatility is described by a time-dependent nonnegative function of a reflecting diffusion. The idea to use reflecting diffusions as building blocks of the volatility came into being because of a certain volatility misspecification in the classical Stein and Stein model. A version of this model that uses the reflecting Ornstein-Uhlenbeck process as the volatility process is a special example of a stochastic volatility model with reflection. The main results obtained in the present paper are sample path and small-noise large deviation principles for the log-price process in a stochastic volatility model with reflection under rather mild restrictions. We use these results to study the asymptotic behavior of binary barrier options and call prices in the small-noise regime.