Deblur-CycleGAN: A Generative Cyclic Approach for Image Blind Motion Deblurring

Ali Syed Saqlain, Songyuan Yu, Li-Yun Wang, Tanvir Ahmad, Z. Abidin
{"title":"Deblur-CycleGAN: A Generative Cyclic Approach for Image Blind Motion Deblurring","authors":"Ali Syed Saqlain, Songyuan Yu, Li-Yun Wang, Tanvir Ahmad, Z. Abidin","doi":"10.1109/icccs55155.2022.9846120","DOIUrl":null,"url":null,"abstract":"In this paper, we propose an end-to-end generative adversarial network (GAN) for single image blind motion deblur-ring, which we called Deblur-CycleGAN. Inspired by the cyclic nature of the original CycleGAN, we perform single image blind motion deblurring in similar fashion while presenting motion deblurring as a cycle-consistent approach. Our proposed method achieves the best qualitative and quantitative results in comparison with existing state-of-the-art methods on GoPro dataset. We also explore the industrial aspect of motion deblurring in wind turbines (WT) with surface cracks on turbine blades. We collect 700 high-resolution images of faulty WT blades via UAV, which we called Turbine Blade dataset. Finally, we compare the performance of our proposed method against existing methods on Turbine Blade dataset and show that our proposed approach achieves the best performance both qualitatively and quantitatively.","PeriodicalId":121713,"journal":{"name":"2022 7th International Conference on Computer and Communication Systems (ICCCS)","volume":"84 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 7th International Conference on Computer and Communication Systems (ICCCS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/icccs55155.2022.9846120","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we propose an end-to-end generative adversarial network (GAN) for single image blind motion deblur-ring, which we called Deblur-CycleGAN. Inspired by the cyclic nature of the original CycleGAN, we perform single image blind motion deblurring in similar fashion while presenting motion deblurring as a cycle-consistent approach. Our proposed method achieves the best qualitative and quantitative results in comparison with existing state-of-the-art methods on GoPro dataset. We also explore the industrial aspect of motion deblurring in wind turbines (WT) with surface cracks on turbine blades. We collect 700 high-resolution images of faulty WT blades via UAV, which we called Turbine Blade dataset. Finally, we compare the performance of our proposed method against existing methods on Turbine Blade dataset and show that our proposed approach achieves the best performance both qualitatively and quantitatively.
Deblur-CycleGAN:一种图像盲运动去模糊的生成循环方法
在本文中,我们提出了一种端到端生成对抗网络(GAN)用于单图像盲运动去模糊环,我们称之为Deblur-CycleGAN。受原始CycleGAN循环特性的启发,我们以类似的方式执行单图像盲运动去模糊,同时将运动去模糊呈现为周期一致的方法。与GoPro数据集上现有的最先进的方法相比,我们提出的方法获得了最好的定性和定量结果。我们还探讨了工业方面的运动去模糊在风力涡轮机(WT)与涡轮叶片表面裂纹。我们通过无人机收集了700张故障WT叶片的高分辨率图像,我们称之为涡轮叶片数据集。最后,我们将所提出的方法与现有方法在涡轮叶片数据集上的性能进行了比较,结果表明所提出的方法在定性和定量上都达到了最佳性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信