Automatic White Matter Fiber Clustering Using Dominant Sets

Luca Dodero, Sebastiano Vascon, L. Giancardo, A. Gozzi, Diego Sona, Vittorio Murino
{"title":"Automatic White Matter Fiber Clustering Using Dominant Sets","authors":"Luca Dodero, Sebastiano Vascon, L. Giancardo, A. Gozzi, Diego Sona, Vittorio Murino","doi":"10.1109/PRNI.2013.62","DOIUrl":null,"url":null,"abstract":"We present an unsupervised approach based on the Dominant Sets framework to automatically segment the white matter fibers into bundles. This framework, rooted in the Game Theory, allows for the automatic determination of the number of clusters from the data itself, without any prior assumption. The clustered bundles are a key information for the generation of unbiased structural connectivity atlases. We have thoroughly validated our algorithm both quantitatively and qualitatively. Indeed, we used biologically plausible synthetic datasets to numerically validate the performance in terms of Precision, Recall and other measures employed in the literature. We also evaluated the algorithm on a real Diffusion Tensor Imaging tractography of a whole mouse brain obtaining promising results. In fact, some of the most prominent brain structures determined by the algorithm correspond to white matter expected anatomy.","PeriodicalId":144007,"journal":{"name":"2013 International Workshop on Pattern Recognition in Neuroimaging","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2013-06-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 International Workshop on Pattern Recognition in Neuroimaging","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PRNI.2013.62","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

Abstract

We present an unsupervised approach based on the Dominant Sets framework to automatically segment the white matter fibers into bundles. This framework, rooted in the Game Theory, allows for the automatic determination of the number of clusters from the data itself, without any prior assumption. The clustered bundles are a key information for the generation of unbiased structural connectivity atlases. We have thoroughly validated our algorithm both quantitatively and qualitatively. Indeed, we used biologically plausible synthetic datasets to numerically validate the performance in terms of Precision, Recall and other measures employed in the literature. We also evaluated the algorithm on a real Diffusion Tensor Imaging tractography of a whole mouse brain obtaining promising results. In fact, some of the most prominent brain structures determined by the algorithm correspond to white matter expected anatomy.
基于优势集的白质纤维自动聚类
提出了一种基于优势集框架的无监督方法来自动分割脑白质纤维束。这个基于博弈论的框架允许从数据本身自动确定集群的数量,而不需要任何预先假设。聚类束是生成无偏结构连通性图谱的关键信息。我们已经从数量和质量上彻底验证了我们的算法。事实上,我们使用生物学上合理的合成数据集,在精度、召回率和文献中采用的其他措施方面对性能进行了数值验证。我们还在真实的全脑扩散张量成像(Diffusion Tensor Imaging tractography)上对该算法进行了评估,获得了令人满意的结果。事实上,该算法确定的一些最突出的大脑结构与预期的白质解剖结构相对应。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信