! Chévere! Text-Based Twitter Patterns from Venezuelan Food Shortages

Laura H. Kahn
{"title":"! Chévere! Text-Based Twitter Patterns from Venezuelan Food Shortages","authors":"Laura H. Kahn","doi":"10.1109/SMAP.2018.8501870","DOIUrl":null,"url":null,"abstract":"Social media data from countries having challenges to free speech is a reliable form of journalism. An analysis is conducted to examine the social media response to the Venezuelan food shortages. Over 37,000 filtered Spanish tweets from the city of Caracas, Venezuela were used to observe reactions within each of the city’s five municipalities. The number of tweets from December 2014 to October 2016 (23 months) is compared to the top trending tweet from July 19, 2017. Machine learning techniques show that certain tweets may be linked to a municipality within a 10 km radius. Tweet volume over almost two years indicates the significance of the shortages among the Venezuelan people engaged in the event.","PeriodicalId":291905,"journal":{"name":"2018 13th International Workshop on Semantic and Social Media Adaptation and Personalization (SMAP)","volume":"25 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 13th International Workshop on Semantic and Social Media Adaptation and Personalization (SMAP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SMAP.2018.8501870","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Social media data from countries having challenges to free speech is a reliable form of journalism. An analysis is conducted to examine the social media response to the Venezuelan food shortages. Over 37,000 filtered Spanish tweets from the city of Caracas, Venezuela were used to observe reactions within each of the city’s five municipalities. The number of tweets from December 2014 to October 2016 (23 months) is compared to the top trending tweet from July 19, 2017. Machine learning techniques show that certain tweets may be linked to a municipality within a 10 km radius. Tweet volume over almost two years indicates the significance of the shortages among the Venezuelan people engaged in the event.
! 表现!委内瑞拉粮食短缺的推特文本模式
来自言论自由面临挑战的国家的社交媒体数据是一种可靠的新闻形式。本文进行了一项分析,以检查社交媒体对委内瑞拉粮食短缺的反应。来自委内瑞拉加拉加斯市的37,000多条经过过滤的西班牙语推文被用来观察该市五个自治市的反应。将2014年12月至2016年10月(23个月)的推文数量与2017年7月19日的热门推文数量进行比较。机器学习技术显示,某些推文可能与半径10公里内的某个城市有关。近两年来的推特数量表明,参与此次活动的委内瑞拉人民中短缺的重要性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信