Periodic Lyapunov differential equation for noise evaluation in oscillatory genetic networks

Sho Ichikawa, Y. Ito, K. Uchida
{"title":"Periodic Lyapunov differential equation for noise evaluation in oscillatory genetic networks","authors":"Sho Ichikawa, Y. Ito, K. Uchida","doi":"10.1109/CCA.2009.5281071","DOIUrl":null,"url":null,"abstract":"The Lyapunov equation, which describes stochastic variations of systems as a covariance equation, plays a central role in evaluation and prediction of behavior of genetic regulatory networks fluctuated by molecular noises. When the genetic network is an autonomously oscillatory system, the Lyapunov equation becomes a periodic differential equation that has generally unbounded solutions. We discuss orbital stability and periodicity properties of the solutions to the periodic Lyapunov differential equation by using Floquet-Lyapunov theory, and propose two global measures for evaluating stochastic fluctuations of the whole periodic trajectory. We also provide an evaluation formula for the period fluctuation.","PeriodicalId":294950,"journal":{"name":"2009 IEEE Control Applications, (CCA) & Intelligent Control, (ISIC)","volume":"47 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 IEEE Control Applications, (CCA) & Intelligent Control, (ISIC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CCA.2009.5281071","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

The Lyapunov equation, which describes stochastic variations of systems as a covariance equation, plays a central role in evaluation and prediction of behavior of genetic regulatory networks fluctuated by molecular noises. When the genetic network is an autonomously oscillatory system, the Lyapunov equation becomes a periodic differential equation that has generally unbounded solutions. We discuss orbital stability and periodicity properties of the solutions to the periodic Lyapunov differential equation by using Floquet-Lyapunov theory, and propose two global measures for evaluating stochastic fluctuations of the whole periodic trajectory. We also provide an evaluation formula for the period fluctuation.
振动遗传网络噪声评价的周期Lyapunov微分方程
Lyapunov方程将系统的随机变化描述为协方差方程,在评估和预测受分子噪声波动的遗传调控网络的行为方面起着核心作用。当遗传网络是一个自主振荡系统时,李雅普诺夫方程就变成了具有一般无界解的周期微分方程。利用Floquet-Lyapunov理论,讨论了周期Lyapunov微分方程解的轨道稳定性和周期性质,并提出了两种评价整个周期轨迹随机涨落的全局测度。并给出了周期波动的评价公式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信