Cerberus: Privacy-Preserving Computation in Edge Computing

Di Zhang, Lei Fan
{"title":"Cerberus: Privacy-Preserving Computation in Edge Computing","authors":"Di Zhang, Lei Fan","doi":"10.1109/INFOCOMWKSHPS50562.2020.9162942","DOIUrl":null,"url":null,"abstract":"Edge computing reduces the overhead of data centers and improves the efficiency of data processing. However, traditional cloud data protection mechanisms are no longer applicable to edge devices. Data leakage and other privacy issues may occur when computation is outsourced to edge nodes. The decentralization raises new privacy challenge for data control, storage and computation. In this work, we present Cerberus, a brand-new framework that preserves data privacy in edge computing by combining blockchain, distributed data storage and trusted execution environment (TEE). Blockchain is used to maintain a global computation state, and also acts as a medium of information interaction. Distributed data storage provides a secure and large-capacity storage. TEE-based off-chain computation guarantees confidentiality and efficiency of data processing. We also implement a prototype of Cerberus using Hyperledger Fabric and Intel SGX. Our evaluation on a sample of data sorting application shows that Cerberus achieves significant speed ups over previous cryptographic schemes. Compared with non secure computation, Cerberus can preserve data privacy without incurring much performance loss.","PeriodicalId":104136,"journal":{"name":"IEEE INFOCOM 2020 - IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS)","volume":"16 10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE INFOCOM 2020 - IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/INFOCOMWKSHPS50562.2020.9162942","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

Abstract

Edge computing reduces the overhead of data centers and improves the efficiency of data processing. However, traditional cloud data protection mechanisms are no longer applicable to edge devices. Data leakage and other privacy issues may occur when computation is outsourced to edge nodes. The decentralization raises new privacy challenge for data control, storage and computation. In this work, we present Cerberus, a brand-new framework that preserves data privacy in edge computing by combining blockchain, distributed data storage and trusted execution environment (TEE). Blockchain is used to maintain a global computation state, and also acts as a medium of information interaction. Distributed data storage provides a secure and large-capacity storage. TEE-based off-chain computation guarantees confidentiality and efficiency of data processing. We also implement a prototype of Cerberus using Hyperledger Fabric and Intel SGX. Our evaluation on a sample of data sorting application shows that Cerberus achieves significant speed ups over previous cryptographic schemes. Compared with non secure computation, Cerberus can preserve data privacy without incurring much performance loss.
Cerberus:边缘计算中的隐私保护计算
边缘计算降低了数据中心的开销,提高了数据处理的效率。然而,传统的云数据保护机制已不再适用于边缘设备。当计算外包给边缘节点时,可能会出现数据泄漏和其他隐私问题。去中心化对数据控制、存储和计算提出了新的隐私挑战。在这项工作中,我们提出了Cerberus,这是一个全新的框架,通过结合区块链,分布式数据存储和可信执行环境(TEE)来保护边缘计算中的数据隐私。区块链用于维护全局计算状态,同时也作为信息交互的媒介。分布式数据存储提供了安全、大容量的存储方式。基于tee的脱链计算保证了数据处理的保密性和效率。我们还使用Hyperledger Fabric和Intel SGX实现了Cerberus的原型。我们对数据排序应用程序样本的评估表明,Cerberus比以前的加密方案实现了显着的速度提升。与非安全计算相比,Cerberus在保护数据隐私的同时不会造成很大的性能损失。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信