Design of a Retransmitted Chipless Tag based on Multi-state Resonators

N.-T. Huang, Z. Ma
{"title":"Design of a Retransmitted Chipless Tag based on Multi-state Resonators","authors":"N.-T. Huang, Z. Ma","doi":"10.13052/2023.aces.j.380404","DOIUrl":null,"url":null,"abstract":"In order to increase the encoding capacity and reduce the size of the tag, this paper proposes the frequency sharing method to design a retransmitted chipless tag, which is composed of N resonators, a coupled microstrip transmission line, and the orthogonal transmitting antenna and receiving antenna. A pair of the same size resonators is placed symmetrically on both sides of the coupled microstrip transmission line. M open-ended stubs (OES) with different combinations are embedded in each resonator to obtain different resonance frequencies. The frequency sharing multi-state resonators’ chipless tags are designed where N=6, M=4, and the dimension of the tag is 46 mm × 30 mm, which can generate about 212 codes. Simulation and measurement results show good agreement and feasibility of the tag design. The chipless tag is small in size, has large encoding capacity and is easy to print. This kind of tag has no silicon chip so the cost is low. It can be widely used in logistics, supermarkets and other fields to replace the barcode.","PeriodicalId":250668,"journal":{"name":"The Applied Computational Electromagnetics Society Journal (ACES)","volume":"44 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-08-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Applied Computational Electromagnetics Society Journal (ACES)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.13052/2023.aces.j.380404","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In order to increase the encoding capacity and reduce the size of the tag, this paper proposes the frequency sharing method to design a retransmitted chipless tag, which is composed of N resonators, a coupled microstrip transmission line, and the orthogonal transmitting antenna and receiving antenna. A pair of the same size resonators is placed symmetrically on both sides of the coupled microstrip transmission line. M open-ended stubs (OES) with different combinations are embedded in each resonator to obtain different resonance frequencies. The frequency sharing multi-state resonators’ chipless tags are designed where N=6, M=4, and the dimension of the tag is 46 mm × 30 mm, which can generate about 212 codes. Simulation and measurement results show good agreement and feasibility of the tag design. The chipless tag is small in size, has large encoding capacity and is easy to print. This kind of tag has no silicon chip so the cost is low. It can be widely used in logistics, supermarkets and other fields to replace the barcode.
基于多态谐振器的重传无芯片标签设计
为了增加编码容量,减小标签尺寸,本文提出了频率共享的方法来设计重传无芯片标签,该标签由N个谐振器、耦合微带传输线、正交发射天线和接收天线组成。在耦合微带传输线的两侧对称放置一对相同尺寸的谐振器。在每个谐振器中嵌入不同组合的M个开放式桩(OES),以获得不同的谐振频率。设计了共频多态谐振器的无芯片标签,N=6, M=4,标签尺寸为46 mm × 30 mm,可生成约212个码。仿真和测试结果表明,该标签设计具有良好的一致性和可行性。无芯片标签体积小,编码容量大,易于打印。这种标签没有硅芯片,所以成本很低。可广泛应用于物流、超市等领域,取代条形码。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信