The geometric algebra as a power theory analysis tool

M. Castilla, J. Bravo, M. Ordóñez, J. Montaño, A. López, D. Borrás, J. Gutierrez
{"title":"The geometric algebra as a power theory analysis tool","authors":"M. Castilla, J. Bravo, M. Ordóñez, J. Montaño, A. López, D. Borrás, J. Gutierrez","doi":"10.1109/ISNCC.2008.4627490","DOIUrl":null,"url":null,"abstract":"In this paper, a multivectorial decomposition of power equation in single-phase circuits for periodic n-sinusoidal /linear and nonlinear conditions is presented. It is based on a frequency-domain Clifford vector space approach. By using a new generalized complex geometric algebra (GCGA), we define the voltage and current complex-vector and apparent power multivector concepts. First, the apparent power multivector is defined as geometric product of vector-phasors (complex-vectors). This new expression result in a novel representation and generalization of the apparent power similar to complex-power in single-frequency sinusoidal conditions. Second, in order to obtain a multivectorial representation of any proposed power equation, the current vector-phasor is decomposed into orthogonal components. The power multivector concept, consisting of complex-scalar and complex-bivector parts with magnitude, direction and sense, obeys the apparent power conservation law and it handles different practical electric problems where direction and sense are necessary. The results of numerical examples are presented to illustrate the proposed approach to power theory analysis.","PeriodicalId":143815,"journal":{"name":"2008 International School on Nonsinusoidal Currents and Compensation","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2008-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 International School on Nonsinusoidal Currents and Compensation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISNCC.2008.4627490","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

Abstract

In this paper, a multivectorial decomposition of power equation in single-phase circuits for periodic n-sinusoidal /linear and nonlinear conditions is presented. It is based on a frequency-domain Clifford vector space approach. By using a new generalized complex geometric algebra (GCGA), we define the voltage and current complex-vector and apparent power multivector concepts. First, the apparent power multivector is defined as geometric product of vector-phasors (complex-vectors). This new expression result in a novel representation and generalization of the apparent power similar to complex-power in single-frequency sinusoidal conditions. Second, in order to obtain a multivectorial representation of any proposed power equation, the current vector-phasor is decomposed into orthogonal components. The power multivector concept, consisting of complex-scalar and complex-bivector parts with magnitude, direction and sense, obeys the apparent power conservation law and it handles different practical electric problems where direction and sense are necessary. The results of numerical examples are presented to illustrate the proposed approach to power theory analysis.
将几何代数作为幂理论的分析工具
本文给出了周期n-正弦/线性和非线性条件下单相电路功率方程的多向量分解方法。它是基于一个频域Clifford向量空间方法。利用一种新的广义复几何代数(GCGA),定义了电压、电流复矢量和视在功率多矢量的概念。首先,将视在功率多矢量定义为矢量相量的几何积(复矢量)。这种新的表达式使得视在功率的表示和推广与单频正弦条件下的复功率相似。其次,为了得到任何功率方程的多向量表示,电流矢量相量被分解成正交分量。幂多矢量概念由复标量和复双矢量组成,具有幅度、方向和意义,服从视在功率守恒定律,可用于处理需要方向和意义的各种实际电学问题。数值算例的结果说明了所提出的幂理论分析方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信