{"title":"Deriving minimal sensory configurations for evolved cooperative robot teams","authors":"J. Watson, G. Nitschke","doi":"10.1109/CEC.2015.7257271","DOIUrl":null,"url":null,"abstract":"This paper presents a study on the impact of different robot sensory configurations (morphologies) in simulated robot teams that must accomplish a collective (cooperative) behavior task. The study's objective was to investigate if effective collective behaviors could be efficiently evolved given minimal morphological complexity of individual robots in an homogenous team. A range of sensory configurations are tested in company with evolved controllers for a collective construction task. Results indicate that a minimal sensory configuration yields the highest task performance, and increasing the complexity of the sensory configuration does not yield an increased task performance.","PeriodicalId":403666,"journal":{"name":"2015 IEEE Congress on Evolutionary Computation (CEC)","volume":"76 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-05-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE Congress on Evolutionary Computation (CEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CEC.2015.7257271","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5
Abstract
This paper presents a study on the impact of different robot sensory configurations (morphologies) in simulated robot teams that must accomplish a collective (cooperative) behavior task. The study's objective was to investigate if effective collective behaviors could be efficiently evolved given minimal morphological complexity of individual robots in an homogenous team. A range of sensory configurations are tested in company with evolved controllers for a collective construction task. Results indicate that a minimal sensory configuration yields the highest task performance, and increasing the complexity of the sensory configuration does not yield an increased task performance.