Adaptive self-interference cancelation in LTE-A carrier aggregation FDD direct-conversion transceivers

A. Gebhard, R. S. Kanumalli, B. Neurauter, M. Huemer
{"title":"Adaptive self-interference cancelation in LTE-A carrier aggregation FDD direct-conversion transceivers","authors":"A. Gebhard, R. S. Kanumalli, B. Neurauter, M. Huemer","doi":"10.1109/SAM.2016.7569758","DOIUrl":null,"url":null,"abstract":"Modern frequency division duplex radio frequency transceivers experience transmitter-to-receiver leakage due to the limited isolation of the duplexer. In Long Term Evolution-Advanced (LTE-A) carrier aggregation receivers the coupling between the local oscillators creates harmonics on the chip which can lead to the downconversion of this leakage signal to the receive (Rx) baseband. Thereby, this so-called modulated spur interference reduces the signal-to-noise ratio of the Rx signal. In this paper, the modulated spur interference is modeled and several adaptive algorithms are compared regarding their convergence and cancelation performance. To maximize the data throughput, the adaptive filter is required to converge within the short time period of one orthogonal frequency-division multiplexing (OFDM) symbol. Out of the investigated concepts the proposed variable step-size least-mean-square algorithm turns out to be the most favorable choice. It satisfies the required constraints of convergence time and cancelation performance, and it features a reasonable low complexity.","PeriodicalId":159236,"journal":{"name":"2016 IEEE Sensor Array and Multichannel Signal Processing Workshop (SAM)","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"20","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE Sensor Array and Multichannel Signal Processing Workshop (SAM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SAM.2016.7569758","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 20

Abstract

Modern frequency division duplex radio frequency transceivers experience transmitter-to-receiver leakage due to the limited isolation of the duplexer. In Long Term Evolution-Advanced (LTE-A) carrier aggregation receivers the coupling between the local oscillators creates harmonics on the chip which can lead to the downconversion of this leakage signal to the receive (Rx) baseband. Thereby, this so-called modulated spur interference reduces the signal-to-noise ratio of the Rx signal. In this paper, the modulated spur interference is modeled and several adaptive algorithms are compared regarding their convergence and cancelation performance. To maximize the data throughput, the adaptive filter is required to converge within the short time period of one orthogonal frequency-division multiplexing (OFDM) symbol. Out of the investigated concepts the proposed variable step-size least-mean-square algorithm turns out to be the most favorable choice. It satisfies the required constraints of convergence time and cancelation performance, and it features a reasonable low complexity.
LTE-A载波聚合FDD直接转换收发器中的自适应自干扰消除
现代的分频双工射频收发器由于双工器的隔离性有限,会产生发射机到接收机的泄漏。在长期演进-高级(LTE-A)载波聚合接收器中,本地振荡器之间的耦合在芯片上产生谐波,从而导致该泄漏信号下变频到接收(Rx)基带。因此,这种所谓的调制杂散干扰降低了Rx信号的信噪比。本文对调制杂散干扰进行了建模,比较了几种自适应算法的收敛性和消除性能。为了最大限度地提高数据吞吐量,要求自适应滤波器在一个正交频分复用(OFDM)符号的短时间内收敛。在研究的概念中,变步长最小均方算法是最有利的选择。该算法满足收敛时间和消去性能的要求,具有较低的复杂度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信